Formulæ and Definitions A Reference for Discrete Mathematics

Prof Hans Georg Schaathun

Høgskolen i Ålesund

27th August 2015

Prof Hans Georg Schaathun

Formulæ and Definitions

Week 1

Choosing k elements from an n-set

	Without replacement	With replacement
Ordered	<i>k</i> -element permutation $\frac{n!}{(n-k)!}$ possibilities	<i>k</i> -element list <i>n^k</i> possibilities
Unordered	subset $\binom{n}{k}$ possibilities	multiset (see Stein <i>et al</i>)

Partitioning

Definition (Partitioning)

A family of sets $\{S_1, S_2, \dots S_k\}$ is a partitioning of S if and only if

2
$$S_i \cap S_j = \emptyset$$
 whenever $i \neq j$.

Counting a partitioned set

Definition (Sum Principle)

If a finite set S has been partitioned into blocks, then the size of S is the sum of sizes of the blocks.

Definition (Product Principle)

If a finite set S has been partitioned into

$$S = S_1 \cup S_2 \cup \ldots \cup S_n$$

and every block has size $|S_i| = m$, then

$$|S| = n \cdot m.$$

Week 2

Relations

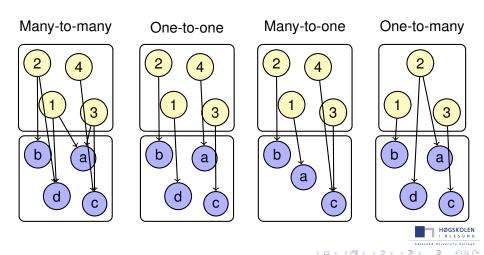
Definition

A relation from X to Y is a set R of ordered pairs (x, y) where $x \in X$ and $y \in Y$.

Prof Hans Georg Schaathun

Formulæ and Definitions

Different kinds of relations



Functions

Definition

A function $f : A \rightarrow B$ defines for value $x \in A$ a function value $f(x) \in B$.

Definition

Let $f : A \rightarrow B$ be a function. The domain of f is the set A. The co-domain of f is the set B.

Definition

Let $f : A \to B$ be a function. The range *R* of *f* is a subset of the domain defined as $R = \{f(x) | x \in A\}$.

Week 2

Functions as Relations

•
$$R_f = \{(x, f(x)) : x \in X\}$$

- Given x, there is a unique y, such that $(x, y) \in R_f$
- Given y, how many x exist such that $(x, y) \in R_f$?

General case could be 0, 1 or many Surjective function every y is used for any $y \in Y$, there is at least one x, such that $(x, y) \in R_f$ Injective function no y is used more than once for any $y \in Y$, there is at most one pair $(x, y) \in R_f$

Definition

A Bijection is a function which is both injective and surjective

Equivalence Relations

Definition

A relation *R* on *X* is reflexive if xRx for any $x \in X$.

Definition

A relation *R* is symmetric if *xRy* whenever *yRx*.

Definition

A relation *R* is transitive if *xRy* and *yRz* implies that *xRz*.

Definition (Equivalence Relation)

A relation \sim which is reflexive, symmetric, and transitive is called an equivalence relation.

I ALESUND