GENETIC ALGORITHMS: THE BINARY GA

Date: Wednesday 18 February 2015 Course: Functional Programming and Intelligent Algorithms Lecturer: Robin T. Bye

Components of binary GA

Algorithm flow

- 1. Define cost function, cost, variables. Select GA parameters.
- 2. Generate initial population.
- 3. Decode chromosomes.
- 4. Find cost for each chromosome.
- 5. Select mates for reproduction.
- 6. Mating.

Algorithm flow

- 7. Mutation.
- 8. Check stopping criteria
 - IF (reached max number of iterations OR converged) THEN stop
 - ELSE go to Step 4.

Variables and cost function

- Nvar-dimensional problem ?→ chromosome has Nvar variables (genes), i=1,.., Nvar
- chrom = [p1,p2,...,pNvar]
- Cost = f(chrom) = f(p1,p2,...,pNvar)
- Example: 2D height map in xy-plane
 - chrom = [x,y]
 - cost = height = f(chrom) = f(x,y)

Variables and cost function

- If too many variables \rightarrow slow GA
- Eg. f = $2x+3y+z/10000+\sqrt{w}/9876$ with constraints $1 \le x, y, z, w \le 10$
- Due to constraints, z, w terms relatively small \rightarrow ignore: f = 2x + 3y
- Variable interaction (epistasis)
 - GA good for medium/high interaction
 - Random search good for high interaction
 - Minimum-seeking good for low interaction

- Encoding: Convert variable values to binary genes
- Decoding: Convert binary genes back to human-readable variable values
- Example:

Bin	Dec	Numbers	Alt. Numbers	Colour	Speed
00	0	10	13.75	Red	Slow
01	1	20	21.25	Green	Medium
10	2	30	28.75	Blue	Fast
11	3	40	36.25	Yellow	Superfast

- Example continued:
 - gene1 = 01 ⇔ medium
 - gene2 = $10 \Leftrightarrow fast$
 - gene3 = 11 ⇔ superfast
 - gene4 = $00 \Leftrightarrow slow$
- chrom = [gene1, gene2, gene3, gene4] =[01101100] =[med,fast,supfast,slow]

- Goal: Sort categories in increasing order (slow,medium,fast,superfast)
- Cost: 0 for correct place, 1 for one place off, 2 for two places off, etc.
 - [01101100] =[medium,fast,superfast,slow]
 - \rightarrow Cost = 1 + 1 + 1 + 3 = 6
 - [00100111] =[slow,fast,medium,superfast]
 - \rightarrow Cost = 0 + 1 + 1 + 0 = 2

- Number of bits Nbits in chromosome:
 - Ngene = number of bits in each gene/var
 - Nvar = number of genes/variables
 - Nbits= Ngene × Nvar= number of bits

Population

- Set of Npop chromosomes
- Each chromosome has Nbits
- Represented as matrix of binary digits
- Dimensions are Npop × Nbits
- Initial population randomly assigned:
 pop=round(rand(Npop, Nbits));

Natural selection

- 1. Rank chromosomes (low cost better)
- Only keep best fraction (selection rate Xrate) of Npop chromosomes →
 Nkeep = Xrate × Npop chromosomes survives
- 3. Let kept chromosomes mate and replace discarded chromosomes

Pairing methods

- From top to bottom (1+2, 3+4, etc.)
- Uniform random pairing
- Weighted random pairing
 - rank weighting
 - cost weighting
- Tournament selection
- Others

Mating

- Randomly pick a crossover point
- Parent1 passes left-bits to offspring1 and right-bits to offspring2
- Parent2 passes left-bits to offspring 2 and right-bits to offspring1
- p1 = [L1 | R1], p2 = [L2 | R2] \rightarrow
- o1 = [L1 | R2], o2 = [L2 | R1]
- Other schemes exist

Elitism

- Always keep best chromosome in population and never mutate it!
- Do not throw away a good solution!

Next generation

- Insert offspring into population
- Recalculate costs and repeat process until
 - convergence
 - max number of iterations reached
 - you are happy for some reason

Three-dimensional view of the cost surface with a view of Long's Peak.

Zinary representations			
Variable	Binary	Decimal	Value
Latitude	0000000	1	40°15′
Latitude	1111111	128	40°16′
Longitude	0000000	1	105°36′
Longitude	1111111	128	105°37′30″

$$chromosome = \left[\underbrace{11000110011001}_{x}\underbrace{0011001}_{y}\right]$$

TABLE 2.3Example Initial Population of 8Random Chromosomes and Their CorrespondingCost

Chromosome	Cost
+00101111000110	-12359
11100101100100	-11872
*00110010001100	-13477
*00101111001000	-12363
11001111111011	-11631
01000101111011	-12097
* 11101100000001	-12588
01001101110011	-11860

* best chromosomes

Natural selection

TABLE 2.4Surviving Chromosomes after a 50%Selection Rate

Chromosome	Cost
* 00110010001100	-13477
* 11101100000001	-12588
* 00101111001000	12363
* 00101111000110	-12359

$$N_{keep} = X_{rate} N_{pop}$$

Best 50% Nkeep = 4

Crossover

Figure 2.11 Two parents mate to produce two offspring. The offspring are placed into the population.

Create offspring and replace bad chromosomes

TABLE 2.7 Pairing and Mating Process of Single-Point Crossover

Chromosome	Family	Binary String
3	ma(1)	00101111001000
2	pa(1)	11101100000001
5	$offspring_1$	<i>00101</i> 100000001
6	offspring ₂	11101 <i>111001000</i>
3	ma(2)	00101111001000
4	pa(2)	00101111000110
7	$offspring_3$	<i>0010111100</i> 0110
8	$offspring_4$	00101111001000

New population after mating

TABLE 2.8 Mutating the Population

Population after Mating	Population after Mutations	New Cost	
00110010001100	00110010001100		
11101100000001	11101100000001	-12588	
00101111001000	00101111010000	-12415	
00101111000110	00001011000111	-13482	
00101100000001	0010100000001	-13171	
11101111001000	1111011010010	-12146	
00101111000110	00100111001000	-12716	
00101111001000	001 <i>10</i> 111001000	-12103	

Members of population after first generation

Figure 2.12 A contour map of the cost surface with the 8 members at the end of the first generation.

Adap26d from [1].

New ranked population at start of second generation

TABLE 2.9 New Ranked Population at the Start of the Second Generation

	Chromosome	Cost
New best \rightarrow	00001011000111	-13482
chromosome	00110010001100	-13477
Chiomosome	00101000000001	-13171
	00100111001000	-12716
	11101100000001	-12588
	00101111010000	-12415
	11110111010010	-12146
	00110111001000	-12103

Adap277 Adap277 Adap277 Adap277 Adap277 Adap277 Adap277 Adap278 Adap27

Population after crossover/mutation in 2nd generation

TABLE 2.10 Population afterCrossover and Muta-tion in the Second Generation

	Chromosome	Cost
Note that 2nd	00001011000111	-13482
hest	00110000001000	-13332
obromocomo	01101001000001	-12923
chromosome	01100111011000	-12128
has been	10100111000001	-12961
replaced by	10100010001000	-13237
one with	00110100001110	-13564
higher cost	0010001000001	-13246

Members of population after 2nd generation

- Example converged after only 3 gen's
- Height found: 14 199 m

Figure 2.15 Graph of the mean cost and minimum cost for each generation. Adapted from [1].

References

[1] Haupt & Haupt, Practical Genetic Algorithms, 2nd Ed., Wiley, 2004.