GENETIC ALGORITHMS: THE CONTINUOUS GA

Date: Thursday 19 February 2015

Course: Functional Programming and Intelligent Algorithms

Lecturer: Robin T. Bye

Components of the continuous GA

Algorithm flow

- Define cost function, cost, variables.
 Select GA parameters.
- 2. Generate initial population.
- 3. Find cost for each chromosome.
- 4. Select mates for reproduction.
- 5. Mating.
- 6. Mutation.
- 7. Convergence check (repeat from 3)

Compared with the binary GA, there is no step for decoding chromosomes here

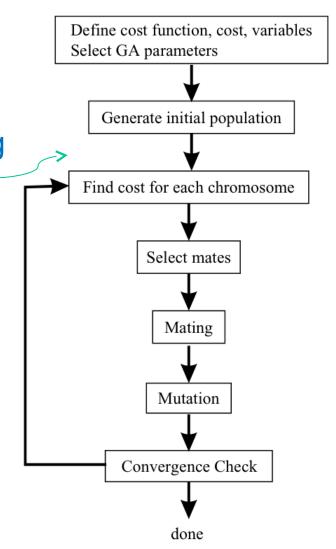


Figure 3.1 Flowchart of a continuous GA.

Variables and cost function

- Nvar-dimensional problem → chromosome has Nvar variables (genes), i=1,.., Nvar
- chrom = [p1,p2,...,pNvar]
- Cost = f(chrom) = f(p1,p2,...,pNvar)
- Example: 2D height map in xy-plane
 - chrom = [x,y]
 - cost = height = f(chrom) = f(x,y)

Variables and cost function

- No encoding to binary
- Use "continuous" values
 - but limited by computer precision, eg.,
 - floating points
 - double precision points

Population

- Set of Npop chromosomes
- Each chromosome is Nvar row vector
- Represented as matrix of cts values
 - Dimensions are Npop †Nvar
- All variables pi normalised to 0≤pi≤1
 - "Unnormalise" in cost function
- Initial population randomly assigned:
 - pop=rand(Npop, Nvar));

Unnormalisation

- Let
 - phi be the highest value of p
 - plo be the lowest value of p
 - pnorm be the normalised value of p
- Then the unnormalised value of p is
 p = (phi plo)pnorm + plo

Unnormalisation

- Example:
 - Phi = 20 and plo = -20
 - pnorm = 0.75
- Then the unnormalised value of p is
 - p = (phi plo)pnorm + plo = (20-(-20))*0.75 + (-20) = 40*0.75 - 20= 30 - 20 = 10

Natural selection

- 1. Rank chromosomes (low cost better)
- 2. Only keep best fraction (=selection rate Xrate) of Npop chromosomes Nkeep = Xrate ₱Npop chromosomes survives
- 3. Let kept chromosomes mate and replace discarded chromosomes

Pairing methods

- From top to bottom (1+2, 3+4, etc.)
- Uniform random pairing
- Weighted random pairing
 - rank weighting
 - cost weighting
- Tournament selection
- Others

- Many approaches
- Simple method: Just swap variable values at random crossover points
 - Problem: No new information introduced
 - Must rely on mutation for new genes
- Blending method (Radcliffe): Combine values of parents into new values
 - Blending limits values to interval of parents

Problem with point crossover methods:

$$parent_{1} = [p_{m1}, p_{m2}, p_{m3}, p_{m4}, p_{m5}, p_{m6}, \dots, p_{mN_{var}}]$$

$$parent_{2} = [p_{d1}, p_{d2}, p_{d3}, p_{d4}, p_{d5}, p_{d6}, \dots, p_{dN_{var}}]$$

$$offspring_{1} = [p_{m1}, p_{m2}, p_{d3}, p_{d4}, p_{m5}, p_{m6}, \dots, p_{mN_{var}}]$$

$$offspring_{2} = [p_{d1}, p_{d2}, p_{m3}, p_{m4}, p_{d5}, p_{d6}, \dots, p_{dN_{var}}]$$

Merely interchanging data! No new genetic material generated!

- Blending method:
 - pnew = β pmn + (1 β) pdn
 - where
 - β is random in range [0,1]
 - pmn is nth variable in mum chromosome
 - pdn is nth variable in dad chromosome
 - which variables to blend?
 - eg., all points to the right or left of crossover p.
 - only a selected few
 - can also use different β for each var

- Blending method:
 - Works well on several interesting problems (Michalewicz, 1994)
 - Problem: Values are bracketed by the extremes already present in the population must use an extrapolation method to avoid this.

- Extrapolation method:
 - Extrapolation introduce values outside range of parents
 - Linear crossover:
 - Three offspring
 - pnew1 = 0.5pmn + 0.5pdn (average)
 - pnew2 = 1.5pmn 0.5pdn (lower/higher)
 - pnew3 = -0.5pmn + 1.5pdn (higher/lower)
 - Variables outside bounds are discarded
 - Best two offspring are kept
 - Can use other factors than 0.5

- Extrapolation method:
 - Example where pmn = 4, pdn = 8
 - pnew1 = 0.5pmn + 0.5pdn = 2 + 4 = 6 (average)
 - pnew2 = 1.5pmn 0.5pdn = 6 4 = 2 (lower)
 - pnew3 = -0.5pmn + 1.5pdn = -2 + 12 = 10 (higher)
 - We get a new lower, an average, and a new higher variable value

Extrapolation + crossover (Haupt):

Crossover point:
$$\alpha = \mathbf{roundup}\{\mathbf{random} * N_{var}\}$$

Randomly select a variable for crossover

Parents:
$$parent_1 = [p_{m1}p_{m2} \dots p_{m\alpha} \dots p_{mN_{var}}]$$

$$parent_2 = [p_{d1}p_{d2} \dots p_{d\alpha} \dots p_{dN_{var}}]$$
 Selected
$$p_{new1} = p_{m\alpha} - \beta[p_{m\alpha} - p_{d\alpha}]$$
 variables:
$$p_{new2} = p_{d\alpha} + \beta[p_{m\alpha} - p_{d\alpha}]$$

Extrapolation + crossover (Haupt):

Offspring:
$$offspring_1 = [p_{m1}p_{m2}...p_{new1}...p_{dN_{var}}]$$
$$offspring_2 = [p_{d1}p_{d2}...p_{new2}...p_{mN_{var}}]$$

- All variables after crossover point are swapped in offspring
- β is a random value in range [0,1]
 - → Limits offspring variables to bounds of parents
- Use β > 1 for variables outside parent bounds
 - → Must then perform a check for out-ofbounds ¹⁹

Mutations

- Randomly mutate a fraction of values in list of chromosomes
 - New random (normalised) values in [0,1]
- Can introduce novelty (new things)
 - Avoid early convergence to local minima
- Mutation rate μ (mu), eg. 20%
- High mutation rate: Better exploration
 - But slower convergence

Elitism

- Always keep best chromosome in population and never mutate it!
- Do not throw away a good solution!

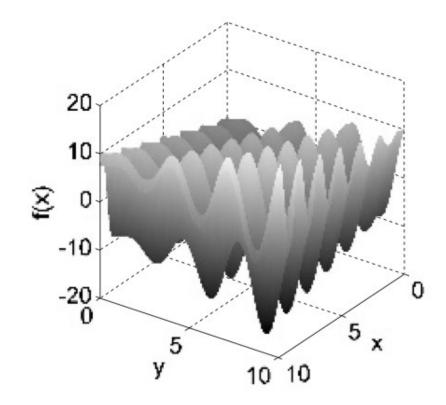
Next generation

- Insert offspring into population
- Recalculate costs and repeat process until
 - convergence
 - max number of iterations reached
 - you are happy for some reason

Test function f7(x,y)

 $x \sin(4x) + 1.1y \sin(2y)$ 9.039, 8.668 minimum: f(0.9039, 0.8668) = -18.5547

for $0 \le x, y \le 10$



Initial population

TABLE 3.1 Example Initial Population of 8 Random Chromosomes and Their Corresponding Cost

x	y	Cost
6.9745	0.8342	3.4766
0.30359	9.6828	5.5408
2.402	9.3359	-2.2528
* 0.18758	8.9371	-8.0108
* 2.6974	6.2647	-2.8957
* 5.613	0.1289	-2.4601
* 7.7246	5.5655	-9.8884
6.8537	9.8784	13.752

Parents

TABLE 3.2 Surviving Chromosomes after a 50% Selection Rate

Number	x	y	Cost
1	7.7246	5.5655	-9.8884
2	0.1876	8.9371	-8.0108
3	2.6974	6.2647	-2.8957
4	5.6130	0.12885	-2.4601

^{*} best chromosomes

Pairs of random numbers to select mates:

(0.6710, 0.8124) $_{\square}$ (2,3) from cumulative rank in table (0.7930, 0.3039) $_{\square}$ (3,1) from cumulative rank in table

TABLE 2.5 Rank Weighting

n	Chromosome	P_n	$\sum\nolimits_{i=1}^{n} {{{\rm{P}}_{i}}}$
1	00110010001100	0.4	0.4
2	11101100000001	0.3	0.7
3	00101111001000	0.2	0.9
4	00101111000110	0.1	1.0

Create offspring and replace bad chromosomes

TABLE 3.3 Pairing and Mating Process of Single-Point Crossover Chromosome Family Binary String Cost

Mates (2,3)

Mates (3,1)

2	ma(1)	0.18758	8.9371
3	pa(1)	2.6974	6.2647
5	$offspring_1$	0.2558	6.2647
6	$offspring_2$	2.6292	8.9371
3	ma(2)	2.6974	6.2647
1	pa(2)	7.7246	5.5655
7	offspring ₃	6.6676	5.5655
8	offspring ₄	3.7544	6.2647

Adapted from [1]. 26

2nd and 3rd generations

TABLE 3.6 Population after Crossover and Mutation in the Second Generation

TABLE 3.8 Ranking of Generation 3 from Least to Most Cost

\overline{x}	у	Cost	x	у	Cost
9.1602	5.5655	-14.05	9.0215	8.6806	-18.53
2.6292	8.9371	-10.472	9.1602	8.6892	-17.494
7.7246	6.4764	-1.1376	9.1602	8.323	-15.366
0.18758	8.9371	-8.0108	9.1602	5.5655	-14.05
2.6292	5.8134	-7.496	9.1602	8.1917	-13.618
9.1602	8.6892	-17.494	2.6292	8.9371	-10.472
7.7246	8.6806	-13.339	7.7246	1.8372	-4.849
4.4042	7.969	-6.1528	7.8633	3.995	4.6471

- Example converged after only 3 gen's
- xm=9.0215, ym=8.6806, cost = -18.53

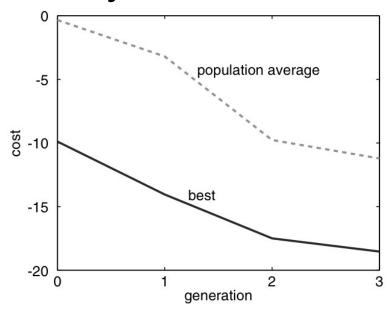


Figure 3.6 Plot of the minimum and mean costs as a function of generation. The algorithm converged in three generations.

Adapted from [1].

References

[1] Haupt & Haupt, Practical Genetic Algorithms, 2nd Ed., Wiley, 2004.