
Workshop

Day 3:
The binary GA

Functional Programming and Intelligent Algorithms:
Genetic Algorithms

Spring 2015
Faculty of Engineering and Natural Sciences

Ålesund University College

Robin T. Bye∗

Revision date: 19 February 2015

∗email: roby@hials.no; website: www.robinbye.com; phone: 70 16 15 49; office: B314.

mailto:roby@hials.no
http://www.robinbye.com/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

Contents
1 Workshop overview 2

1.1 Topics . 2
1.2 Reading material . 2
1.3 Specific learning outcomes . 2
1.4 Schedule . 3

2 Exercises 4
2.1 Components of the binary GA . 4
2.2 String learning using a binary GA . 5
2.3 Function optimisation using a binary GA . 7

3 Homework 8

1 Workshop overview

1.1 Topics

Today’s topics include:

• Components of the binary GA

• Solving a 1D and 2D functional problems using a binary GA

• String-learning GA

1.2 Reading material

Compulsory reading to be studied before this workshop is Chapter 2 in Haupt & Haupt (2004) on
binary GAs.

1.3 Specific learning outcomes

After completing this workshop, including self-study, reading and exercises, the students should
be able to

• explain the components and algorithmic flow of the binary GA.

• demonstrate typical effects of changing parameters of the binary GA.

© 2015 Robin T. Bye www.robinbye.com 2 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

• implement and modify their own binary GAs to suit a variety of problems, including function
optimisation and toy problems such as string learning.

1.4 Schedule

We begin at 8.15 with a recap of the last couple of weeks’ activities and questions. Today’s
workshop will roughly follow the schedule below:

08.15 Status update/recap.

08.45 Binary GA.

10.15 Workshop rest of the day.

Description of a Basic GA

The basic steps that almost any GA consists of are outlined in high-level pseudocode in Algorithm 1
below, where we adopt a cost function as our objective function (loosely adapted from Haupt &
Haupt, 2004, and other sources). Note that the pseudocode in Algorithm 1 is procedural, whereas
you need to reformulate it to being functional in Haskell (of course, since you will be doing
input/output and randomness, some impurity is unavoidable).

A chromosome c is an encoded candidate solution to the optimisation problem of optimising f(c).
The design parameters that we want to optimise must be translated (encoded) from their original
domain to a format suitable for the GA, usually arrays of bits or real-valued numbers, often
normalised to the interval [0, 1]. The bits or numbers are usually called genes.

The objective function quantifies that quality of candidate solutions, that is, how well they ful-
fill the desired design criteria. The selection criterion determines how many chromosomes in a
population survives from one iteration to the next. For examle, using the roulette wheel method,
the cost (fitness) associated with each chromosome is evaluated and the chromosomes are given a
weighted selection probability according to their cost, where a smaller cost (greater fitness) results
in a greater probability.

A pre-determined fraction, of chromosomes (typically half the population) is then randomly picked,
with low cost (high fitness) chromosomes having a greater chance of being picked and kept for
survival and reproduction.

For mating, several crossover methods exists, where genes from two parent chromosomes are
combined into one or several offspring, which are then put back into the population, replacing
those chromosomes that were not selected for mating.

After mating, a fraction of the chromosomes will have one or several of their genes mutated. This
means flipping (inverting) bits for binary chromosomes, or changing the values of these genes to

© 2015 Robin T. Bye www.robinbye.com 3 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

/* INITIALISATION */
define encoding scheme for chromosomes c;
define objective function f(c);
set criteria for selection, crossover, mutation, elitism;
generate initial population of chromosomes;
sort population in increasing order of cost;
bestChrom← population[0];
set minCost, maxIterations;
i← 1;
/* LOOP */
while i < maxIterations OR bestCost > minCost do

evaluate cost for each chromosome;
select chromosomes for mating;
perform mating, crossover, mutation, elitism;
update population;
sort population in increasing order of cost;
bestChrom← population[0];
bestCost← f(bestChrom);
i← i+ 1;

end
return i, bestChrom, bestCost;
decode bestChrom to original domain;

Algorithm 1: Basic GA.

random numbers within some allowable range.

Next, each of the chromosomes in the updated population is evaluated by the objective function
and the population is sorted in descending order of performance (ability to minimise cost or
maximise fitness).

The process repeats until the maximum number of iterations has been reached, or the solution (the
best chromosome) has reached a satisfactory performance. Then the algorithm ends and returns
the best chromosome, which is decoded back to its original domain. In our case, the decoded
solution specifies the optimal values for selected design parameters of an offshore crane.

2 Exercises

2.1 Components of the binary GA

Exercise 2.1: Draw a diagram depicting the steps that constitute the algorithmic flow of a binary
GA.

Exercise 2.2: Explain the following terms:

© 2015 Robin T. Bye www.robinbye.com 4 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

(a) Nvar

(b) Ngene

(c) Nbits

(d) Npop

(e) Xrate

(f) Nkeep

Exercise 2.3: In terms of search and optimisation algorithms such as the GA, what is meant by
the following terms:

(a) Elitism.

(b) Convergence rate.

(c) Exploration.

(d) Exploitation.

Exercise 2.4: Suppose you have a GA with some parameter settings that yield a particular level
of exploration and a particular rate of convergence (exploitation). Explain what is likely to happen
if you increase or decrease

(a) the population size.

(b) the mutation rate.

(c) the selection rate.

(You may have to come back to this question after having tried it for yourself in the following
exercises).

2.2 String learning using a binary GA

Implement a GA able to learn a string. You should use characters from the entire English alphabet
consisting of 26 characters from ’a’ to ’z’; ten digits from ’0’ to ’9’; and the following twelve symbols:
. , ; : ? ! _ + - * /
That is, your character set will have a total of 48 characters. Note that the symbol means the
space character. For convience, here is the entire alphabet:

alphabet = "abcdefghi jk lmnopqrstuvxyz0123456789 . , ; : ? !_+−∗/ "

© 2015 Robin T. Bye www.robinbye.com 5 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

You should create a module called BinaryGA.hs where you will enter all your code.

Exercise 2.5: How many bits are needed to represent a character? Suggest an encoding scheme
and implement it in a function called encodeString.

Exercise 2.6: Implement a decoding function decodeChromosome that decodes a chromosome
(bit string or list of bits) and returns the corresponding character string. Test and demonstrate
that your function works by supplying test chromosomes and observe if the function generates
correct character strings.

Exercise 2.7: Test and demonstrate that your encoding and decoding functions work by encoding
test strings of characters and then decoding the encoded strings to see if you get back the original
strings:

s5 = " de s c a r t e s : c og i t o ergo sum"
b = encodeString s5
s ' = decodeChromosome b
itWorks = s5 == s '

Exercise 2.8: Implement a cost function stringCost with two arguments s (test string) and c

(correct string). The function should return a cost based on the difference between the test string
s and the correct string c. Test the function by supplying some test strings to it:

s1 = "abcde"
s2 = "aaaaa"
S3 = "hxlxo "
c = " h e l l o "
cost1 = stringCost s1 c
cost2 = stringCost s2 c
cost3 = stringCost s3 c

Note that we could have calculated a cost based on chromosomes instead. However, for most
problems, the cost function will relate to real-world values (e.g., the x and y coordinates of the
2D optimisation problem from Haupt & Haupt (2004) used as an example in the lectures).

Exercise 2.9: Implement a binary GA stringLearningGA. with one argument s (character
string). The algorithm should be able to learn the character string s.

NOTE: More code suggestions will come here later but please start yourself!

Some things you will need to consider are how to implement a GA such as the one in Algorithm 1,
that is,

(a) a selection method (from top to bottom, random, cost weighted, rank weighted, tournament
selection)

© 2015 Robin T. Bye www.robinbye.com 6 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

(b) a crossover method (single-point, double-point, uniform, etc.)

(c) a mutation method

(d) an elitist method

(e) a method for sorting the population in increasing order of cost

(f) a method for updating the population between generations

(g) randomness (which is impure)

Exercise 2.10: Test your binary GA on some test strings such as

• abc123.,;

• descartes: cogito ergo sum

• 2+2 is: 4, 2*2 is: 4; why is _/not/_ 2.2*2.2 equal to 4.4?!

Experiment with algorithm settings such as

• population size (number of chromosomes)

• maximum number of iterations

• selection rate

• mutation rate

and discuss your results in terms of ability to find the correct string, e.g., examine the

• GA-generated string vs. correct string

• cost of GA-generated string (zero for finding the correct string)

• number of iterations needed

• total runtime

If you modify your cost function stringCost, or implement other cost functions, examine the
performance of the GA for each of these.

2.3 Function optimisation using a binary GA

Exercise 2.11: Modify your binary GA from above or write a new one to optimise the test
functions given in Appendix I of Haupt & Haupt (2004) (you have already implemented f1, f2, f6,
and f7 previously). Does it work? Experiment with different algorithm settings, such as varying
the

• population size (number of chromosomes)

• maximum number of iterations

© 2015 Robin T. Bye www.robinbye.com 7 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2015 Module: Genetic Algorithms

• selection rate

• mutation rate

How does your algorithm compare with your simple minimum-search algorithm fminsimple used
previously?

Also, note that the test function f7 got an erroneous solution in Haupt & Haupt (2004). The
correct solution is

xm = 9.039 (2.1)
ym = 8.668 (2.2)

fmin(xm, ym) = −18.5547 (2.3)

That is, both xm and ym are wrong by a factor of 10.

3 Homework

• Complete all the exercises above.

• Read through (again!) the specific learning outcomes in Section 1.3 to check which outcomes
you have not attained yet. Study today’s material and prepare questions for tomorrow about
learning outcomes you have missed.

• Prepare for Day 4 by reading about the continuous genetic algorithm (GA) in Chapter 3 of
Haupt & Haupt (2004).

References
Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms . Wiley, 2nd ed.

© 2015 Robin T. Bye www.robinbye.com 8 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Workshop overview
	Topics
	Reading material
	Specific learning outcomes
	Schedule

	Exercises
	Components of the binary GA
	String learning using a binary GA
	Function optimisation using a binary GA

	Homework

