The Hamming Code A very little coding theory

Prof Hans Georg Schaathun

Høgskolen i Ålesund

2nd January 2014

Prof Hans Georg Schaathun

The Hamming Code

2nd January 2014 1 / 8

Error-Control Coding

Noise damages information

• How do we get robust communication?

Prof Hans Georg Schaathun

The Hamming Code

Communications with Error-Control

Prof Hans Georg Schaathun

The Hamming Code

2nd January 2014 3 / 8

Image: A matrix

• The [7, 4, 3] Hamming Code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

• Encoding Function $\mathbf{c} = \mathbf{m} \cdot \mathbf{G}$

(1)

Prof Hans Georg Schaathun

The Hamming Code

Properties

- The Hamming code is a set $\mathcal{C} \subset \mathbb{Z}_2^7$
- The elements of C are valid codewords
 - $\#C = 2^k = 2^4$ valid words
 - $2^n = 2^7$ possible 7-bit words
 - A fraction $2^k/2^n = 2^{-3}$ of the words are valid
- Take two distinct words $c_1, c_2 \in C$
 - The Hamming distance $d(c_1, c_2) \geq 3$
- At least three bit errors to risk confusion with another codeword

Error Detection and Error Correction

Error Detection if $\mathbf{r} \notin C$, we have detected an error.

- We can for instance ask for a retransmission.
- The Hamming code can detect up to two errors
- Error Correction if $\mathbf{r} \notin C$, we try to find the most likely $\mathbf{c} \in C$, which could be received as \mathbf{r}
 - The Hamming Code can correct one error
 - It never corrects more than one error

Note that if we use the Hamming code for error correction, we cannot also detect two errors.

Mathematical Introduction A First Course in Coding Theory by Raymond Hill Comprehensive Engineering Textbook Error-Control Coding by Lin

and Costello

Prof Hans Georg Schaathun

The Hamming Code

Summary

Exercise

Using the generator matrix *G* from slide 4, encode the message (0011).

Prof Hans Georg Schaathun