The Sample Mean Point Estimation by Example

Prof Hans Georg Schaathun

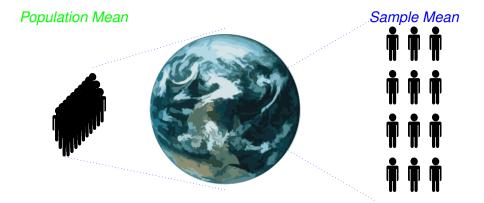
Høgskolen i Ålesund

7th February 2014

Prof Hans Georg Schaathun

The Sample Mean

Sample and Population Mean



$$\mu = \frac{1}{\#E} \sum_{i \in E}^{n} x_i$$

Prof Hans Georg Schaathun

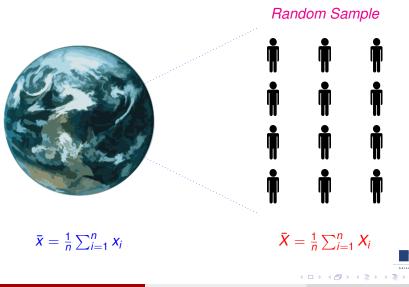
The Sample Mean

 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

∃ ▶ ∢

7th February 2014 2 / 7

Sample Mean



Prof Hans Georg Schaathun

The Sample Mean

7th February 2014 3 / 7

Definition (Bhattacharyya and Johnson)

A statistic is a function of the sample observations.

- $\bar{x} = f(x_1, x_2, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$
- Each observation is the result of a random (stochastic) variable
 X_i → x_i
- A function of a stochastic variables is a new stocastic variable

•
$$\bar{X} = f(X_1, X_2, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

Remember the sample mean is a stochastic variable.

The mean of the mean

Question

What is the expected value (mean) $E(\bar{X})$?

- **1** Remember definition: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2 X_i are independent $\Rightarrow E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i)$
- ③ Identical distribution $\Rightarrow E(\bar{X}) = \frac{1}{n} \cdot n \cdot \mu = \mu$

The expected value of the sample mean is equal to the population mean.

THE 1 AT 1

The mean of the mean

Question

What is the expected value (mean) $E(\bar{X})$?

- Remember definition: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2 X_i are independent $\Rightarrow E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i)$
- 3 Identical distribution $\Rightarrow E(\bar{X}) = \frac{1}{n} \cdot n \cdot \mu = \mu$

The expected value of the sample mean is equal to the population mean.

Prof Hans Georg Schaathun

To estimate to guess, roughly judge or calculate Approximation $x \approx y$ means |x - y| is small Estimation x is an estimate of y if |x - y| probably is small

Definition (Estimator)

An estimator $\hat{\theta}$ of a parameter θ is a statistic (function of sample observations) used to estimate θ .

• Applying the function $\hat{\theta}$ gives an estimate of θ

Definition (Unbiased estimator)

An estimator $\hat{\theta}$ is said to be unbiased if $E(\hat{\theta}) = \theta$.

Proposition

The sample mean \bar{X} is an unbiased estimator of the population mean μ .

- \bar{X} is a stochastic variable
- The observed value \bar{x} is an estimate of μ

