The Standard Error The Random Nature of Estimators

Prof Hans Georg Schaathun

Høgskolen i Ålesund

7th February 2014



Prof Hans Georg Schaathun

The Standard Error

## Sample Mean



Prof Hans Georg Schaathun

The Standard Error

## **Probability Distribution**



HØGSKOLEN

Prof Hans Georg Schaathun

The Standard Error

7th February 2014 3 / 7

## The Standard Error

## • Estimator $\hat{\theta}$

- Stochastic variable
- Probability distribution
- Mean  $E(\hat{\theta})$
- Variance  $var(\hat{\theta})$

#### Definition

The standard deviation  $\sigma$  of an estimator  $\hat{\theta}$  is called the standard error.

• We write S.E. $(\hat{\theta})$ 



# The Standard Error of the Sample Mean Step 1: Variance

#### Question

What is the standard error S.E. $(\bar{X})$ ?

$$\operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$
$$= \frac{1}{n^{2}}\operatorname{var}\left(\sum_{i=1}^{n}X_{i}\right)$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}(X_{i})$$
$$= \frac{1}{n^{2}} \cdot n \cdot \sigma^{2} = \sigma^{2}/n.$$

Prof Hans Georg Schaathun

The Standard Error

7th February 2014 5 / 7

### The Standard Error of the Sample Mean Step 2: The Standard Error

Question

What is the standard error S.E. $(\bar{X})$ ?

S.E.
$$(\bar{X}) = \sqrt{\operatorname{var}(\bar{X})}$$
$$= \sqrt{\sigma^2/n}$$
$$= \frac{1}{\sqrt{n}}\sigma.$$

Prof Hans Georg Schaathun

7th February 2014 6 / 7

## Summary

- Estimators are stochastic variable
- The standard deviation of an estimator: Standard Error
- $I S.E.(\bar{X}) = \sigma/\sqrt{n}$ 
  - where  $\sigma$  is std. deviation of X
- Larger samples (n) gives smaller standard error

