Statistical Dependency And Examples with Dependent Events

Prof Hans Georg Schaathun

Høgskolen i Ålesund

1st April 2014

Prof Hans Georg Schaathun

Statistical Dependency

1st April 2014 1 / 6

The Coin Toss

- We shall toss two coins
- One coin is fair
 - 50-50 chance of head and tail
- One coin is bent
 - 75% probability of head
- You do not know which coin is which.

The first coin toss

- Draw one coin at random.
- 2 Toss the coin
- What is the probability of head?

Prof Hans Georg Schaathun

Statistical Dependency

1st April 2014 3 / 6

The probability of two heads

- Two head means $H_1 \cap H_2$
 - $P(H_1 \cap H_2) = ?$
- Hard way:
 - $P(H_2|H_1) \cdot P(H_1)$
 - Each H_i depends on the Bent-event.
- Easier approach.
 - We throw a bent coin and a fair coin
 - It does not matter which one is thrown first.
 - $P(H_B) = 0.75, P(H_F) = 0.5$
 - H_B and H_F are independent events
 - $P(H_1 \cap H_2) = P(H_B \cap H_F) = 0.75 \cdot 0.5 = 0.375$

The second coin toss

• Symmetric problem

• $P(H_2) = P(H_1)$

• What if we know whether H₁ occurred?

• What is $P(H_2|H_1)$?

Summary

- Conditional Probability
 - P(A|B) the probability of A, assuming that B occurred
- Independent events if $P(A|B) = P(A|\neg B)$
- Dependent events if $P(A|B) \neq P(A|\neg B)$
- The joint probability $P(A \cap B)$
 - $A \cap B$ means both A and B occur
 - $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$

• • • • • • • • • • • • •