The Alternative Hypothesis One-sided or Two-sided Test?

Prof Hans Georg Schaathun

Høgskolen i Ålesund

20th March 2014

Prof Hans Georg Schaathun

The Alternative Hypothesis

20th March 2014 1 / 7

The Null Hypothesis

- *H*₀ : The error probability *p_e* is 10⁻⁹
 p = 10⁻⁹
- What is the alernative to H₀ being true?
- What are we really trying to test?
- We write H₁ for the alternative hypothesis

1)
$$H_1: p_e
eq 10^{-9}$$

2) $H_1': p_e < 10^{-9}$

Two-Sided Tests

A logical viewpoint

$$H_0: p_e = 10^{-9} \ H_1: p_e
eq 10^{-9}$$

- The two hypotheses are logical negations
- This is similar to previous videos
 - we reject H_0 if

- the test statistic is large
- the test statistic is small 2
- This is called a two-sided test

The probability distribution

Prof Hans Georg Schaathun

The Practical Viewpoint

- We want to demonstrate $p_e < 10^{-9}$
- Two competing hypotheses
 - *A* : *p*_e < 10⁻⁹
 - *B* : *p*_e ≥ 10^{−9}
- What can be the null hypothesis H₀?
- $H_0: p_e = 10^{-9}$
 - Equality gives known probability distribution
- We can choose the alternative hypothesis
 - D Two-sided test: H_1 : $p_e
 eq 10^{-9}$
 - 2 One-sided test: $H_1 : p_e < 10^{-9}$

The Practical Viewpoint

- We want to demonstrate $p_e < 10^{-9}$
- Two competing hypotheses
 - A: p_e < 10⁻⁹

- What can be the null hypothesis H₀?
- $H_0: p_e = 10^{-9}$
 - Equality gives known probability distribution
- We can choose the alternative hypothesis
 - **1** Two-sided test: $H_1 : p_e \neq 10^{-9}$
 - One-sided test: *H*₁ : *p_e* < 10⁻⁹

The probability distribution

Prof Hans Georg Schaathun

The Alternative Hypothesis

20th March 2014 6 / 7

Summary

- $H_0: \mu = \mu_0$; σ known
- Test on population mean
 - use sample mean \bar{X}
- We normalise

•
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

- $Z \sim N(0, 1)$ under H_0
- Two-sided test $H_1 : \mu \neq \mu_0$
 - Reject if $|Z| > z_{\alpha/2}$ where $P(Z > z_{\alpha/2}) = \alpha/2$
- One-sided test $H_1: \mu > \mu_0$
 - Reject if $Z > z_{\alpha}$ where $P(Z > z_{\alpha}) = \alpha$