Testing with the Binomial Distribution Binomial Proportions with Small Sample

Prof Hans Georg Schaathun

Høgskolen i Ålesund

24th March 2014

Prof Hans Georg Schaathun

Testing with the Binomial Distribution

24th March 2014 1 / 7

 H_0 : engineering students have 30% probability of failing on the elective maths module.

- Check n students from the database
- Ount the number of failures X
- $X \sim B(n,\pi)$
- X can be used as a test statistic.
 - Now, suppose *n* is relatively small.
 - We cannot use the normal approximation

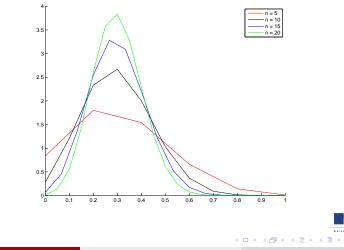
The Binomial Distribution

$$P(X = x) = \binom{n}{x} \cdot \pi^{x} \cdot (1 - \pi)^{n - x},$$
(1)
$$X \sim B(n, \pi)$$
(2)

- Cumulative Distribution Function
 - $P(X \leq x)$
 - 1 P(X > x)
- Use probability tables for the binomial distribution,
 - or matlab or another software tool

The Probability Distribution Function

 $X \sim B(n, 0.3)$



Prof Hans Georg Schaathun

Testing with the Binomial Distribution

Calculating the *p*-value

The one-sided case

•
$$H_0 : \pi = \pi_0$$
 versus $H_1 : \pi > \pi_0$
• $p = P(X \ge x_{obs})$
• $H_0 : \pi = \pi_0$ versus $H_1 : \pi < \pi_0$
• $p = P(X \le x_{obs})$

Prof Hans Georg Schaathun

Testing with the Binomial Distribution

Calculating the *p*-value

The two-sided case

•
$$H_0: \pi = \pi_0$$
 versus $H_1: \pi \neq \pi_0$
• $p = 2 \cdot P(X \ge x_{obs})$ when $x_{obs} > n\pi$
• $p = 2 \cdot P(X \le x_{obs})$ when $x_{obs} < n\pi$

Prof Hans Georg Schaathun

Testing with the Binomial Distribution

24th March 2014 6 / 7

Summary

• Hypothesis test with a binomial distribution

• $H_0: \pi = \pi_0$

• If the sample is small, use binomial distribution

•
$$P(X = x) = {x \choose n} \cdot p^x \cdot (1 - p)^{n-x}$$

•
$$H_0: \pi = \pi_0$$
 versus $H_1: \pi > \pi_0$

•
$$p = P(X \ge x_{obs})$$

•
$$H_0: \pi = \pi_0$$
 versus $H_1: \pi < \pi_0$

•
$$p = P(X \leq x_{obs})$$

•
$$H_0: \pi = \pi_0$$
 versus $H_1: \pi \neq \pi_0$

•
$$p = 2 \cdot P(X \ge x_{obs})$$
 when $x_{obs} > n\pi$

•
$$p = 2 \cdot P(X \le x_{obs})$$
 when $x_{obs} < n\pi$

