Hypothesis Testing and Confidence Intervals A first interpretation of the test

Prof Hans Georg Schaathun

Høgskolen i Ålesund

18th March 2014

Prof Hans Georg Schaathun

Hypothesis Testing and Confidence Intervals

Testing a Hypothesis

- *H*₀: The error probability is 1%
- In other words
 - number of errors X over n tests
 - *X* ~ *B*(*n*,*p*)
 - *H*₀ : *p* = 0.01
- We want to test the hypothesis
 - Maximum 5% probability of Type I error

The Level of Significance

- Remember, Type I errors are serious
- Bound the probability of such errors
 - $P(\text{Type I}) \leq \alpha$
- The bound α is called the level of significance

In the example $\alpha = 0.05$

Interval Estimation

$$\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Confidence interval (\hat{p}_0, \hat{p}_1)
 - Level of confidence $\beta = 1 \alpha = 95\%$
 - With 95% probability $\hat{p}_0 \leq p \leq \hat{p}_1$
- If H₀ is true
 - *p* = 0.01
 - 2 With 95% probability $\hat{p}_0 \leq 0.01 \leq \hat{p}_1$
- Run the test
 - If $\hat{p}_0 \leq 0.01 \leq \hat{p}_1$, then H_0 plausible
 - 2 If 0.01 $< \hat{p}_0$ or 0.01 $> \hat{p}_1$, then H_0 is not plausible
- Significance level (100 95)% = 5%

Confidence and Significance

- Confidence level β for estimation
- Significance level α for hypothesis testing
- Connection $1 = \alpha + \beta$

5/6

18th March 2014

Summary

- Strong connection
 - Hypothesis testing
 - 2 Confidence intervals
- Hypothesised value is expected to be inside the confidence interval
- If it is not, we reject the null hypothesis
- Confidence level β related to significance level α

•
$$\alpha = \mathbf{1} - \beta$$

