The Mean with Known Variance An example of hypothesis testing

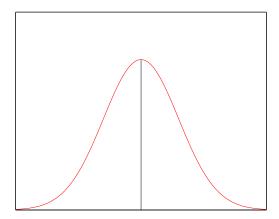
Prof Hans Georg Schaathun

Høgskolen i Ålesund

18th March 2014

Prof Hans Georg Schaathun

The Mean with Known Variance


18th March 2014 1 / 7

Claim The average student drinks two pints of beer on Saturday.

- The claim is a hypothesis
 - *H*₀ : μ = 2
- We can poll n students
 - How many pints of beer do you drink on Saturday?
 - Observations: *X*₁, *X*₂, *X*₃, ..., *X*_n
- We assume $\sigma_X = 1.5$
- Test statistic:
 - Sample mean \bar{X}

The probability distribution

Prof Hans Georg Schaathun

The Mean with Known Variance

18th March 2014 3 / 7

< 17 ▶

We need to know the probability distribution of \bar{X} under H_0

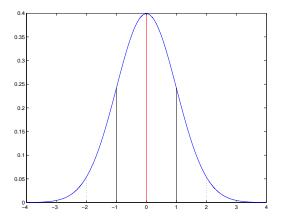
- Normal distribution when *n* is large
 - Central Limit Theorem
- $\bar{X} \sim N(\mu, \sigma)$
- μ = 2, σ_X = 1.5

•
$$\sigma_{\bar{X}} = \sigma_X / \sqrt{n} = 1.5 / \sqrt{n}$$

We leave unknown σ for the next video.

Normalisation

•
$$\bar{X} \sim N\left(2, \frac{1.5}{\sqrt{n}}\right)$$


- Normalisation
 - **()** Subtract μ to get $\mu' = 0$
 - 2 Divide by σ to get $\sigma' = 1$

•
$$Z = \frac{\bar{X}-2}{1.5/\sqrt{n}}$$

• $Z \sim N(0,1)$

• Let's use Z as the test statistic

The probability distribution

Prof Hans Georg Schaathun

The Mean with Known Variance

18th March 2014 6 / 7

< 6 b

Summary

- $H_0: \mu = \mu_0$; σ known
- Test on population mean
 - use sample mean \bar{X}
- We normalise

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

- $Z \sim N(0, 1)$ under H_0
- Reject H_0 with significance level α
 - if $|Z|>z_{lpha/2}$ where ${\it P}(Z>z_{lpha/2})=lpha/2$