Testing with Binomial Proportions The Case with Large Sample

Prof Hans Georg Schaathun

Høgskolen i Ålesund

24th March 2014

Prof Hans Georg Schaathun

Testing with Binomial Proportions

24th March 2014 1 / 5

- *H*₀ : The error probability *p_e* is 10⁻⁹ *p_e* = 10⁻⁹
- *p_e* is a binomial proportion
- Run n tests of the system
- Count the number of errors X
- 3 $X \sim B(n, p_e)$
- X can be used as a test statistic.

Recall the Confidence Interval

$$\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $\hat{p}_e = X/n$.

• When
$$n$$
 is large $\hat{p}_e \sim \mathcal{N}\left(p_e, \sqrt{rac{p_e(1-p_e)}{n}}
ight)$

using the Central Limit Theorem

- Estimate σ_X using p̂_e and the formula for σ for a binomial distribution
- Otherwise similar to means for a normal distrubution

Normalisation

•
$$X \sim N(n \cdot p'_e, \sqrt{n \cdot p'_e \cdot (1 - p'_e)})$$
 under H_0
• $p'_e = 10^{-9}$

- Normalisation
 - Subtract the mean
 - 2 Divide by the standard deviation

•
$$Z = \frac{X - n \cdot p'_e}{\sqrt{n \cdot p'_e \cdot (1 - p'_e)}}$$

•
$$Z \sim N(0, 1)$$

• We use Z as the test statistic

- Hypothesis test with a binomial distribution
 - *H*₀ : error probability is *p*'_e
- If the sample is large, use standard normal distribution:

•
$$Z = \frac{X - n \cdot p'_e}{\sqrt{n \cdot p'_e \cdot (1 - p'_e))}}$$

- Two-sided test $H_1 : p_e \neq p'_e$
 - Reject if $|Z| > z_{\alpha/2}$ where $P(Z > z_{\alpha/2}) = \alpha/2$
- One-sided test $H_1: p_e > p'_e$
 - Reject if $Z > z_{\alpha}$ where $P(Z > z_{\alpha}) = \alpha$

不同 いんきいんき