Hypothesis Testing of the Mean The case with unknown variance

Prof Hans Georg Schaathun

Høgskolen i Ålesund

21st March 2014

Prof Hans Georg Schaathun

Hypothesis Testing of the Mean

21st March 2014 1 / 6

Claim The average student drinks two pints of beer on Saturday.

- The claim is a hypothesis
 - *H*₀ : μ = 2
 - We know nothing about σ
- Polling students gives observations
 - $X_1, X_2, X_3, \dots, X_n$
- Basis for a test statistic:
 - Sample mean \bar{X}

We need to know the probability distribution of \bar{X} under H_0

- Small *n* cannot use the Central Limit Theorem
- Unknown σ
- What did we do with the confidence interval?

Student's t-distribution

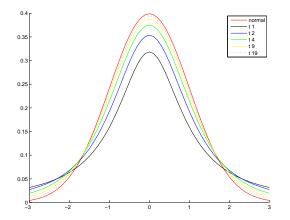
• We need to assume that the X_i have Normal Distribution

We need to know the probability distribution of \bar{X} under H_0

- Small *n* cannot use the Central Limit Theorem
- Unknown σ
- What did we do with the confidence interval?

Student's t-distribution

• We need to assume that the X_i have Normal Distribution


Normalisation and the t-distribution

$$T = rac{ar{X} - 2}{s/\sqrt{n}}$$

- s is the sample standard deviation
- $T \sim \mathcal{T}(n-1)$
- We can use T as the test statistic

The probability distribution

Prof Hans Georg Schaathun

Hypothesis Testing of the Mean

21st March 2014 5 / 6

< 17 ▶

э.

Summary

- $H_0: \mu = \mu_0; \sigma$ unknown
- Test on population mean
 - use sample mean \bar{X}
- We define a t-distributed test statistic

•
$$T = rac{\bar{X}-2}{s/\sqrt{n}}$$

• $T \sim \mathcal{T}(n-1)$

- Reject H_0 with significance level α

 - (one-sided) if $T > t_{\alpha}^{n-1}$ where $P(T > t_{\alpha}^{n-1}) = \alpha$ (two-sided) if $|T| > t_{\alpha/2}^{n-1}$ where $P(T > t_{\alpha/2}^{n-1}) = \alpha/2$

