Hans Georg Schaathun
September 2016
$$f: x \mapsto x^2$$
$$f: \mathbb{R} \to \mathbb{R}$$
$$f: z \mapsto z^2$$
$$f: \mathbb{C} \to \mathbb{C}$$
$$f(x+iy) = u(x,y) + iv(x,y)$$
$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad\quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$$
$$f'(x+iy) =\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}$$