Hans Georg Schaathun
August 2016
Finn eit generelt uttrykk for den \(n\)te-deriverte \(f^{(n)}(x)\) der $$f(x) = \frac1{x+1}$$
$$f(x) = \frac1{x+1} = (x+1)^{-1}$$
$$f'(x) = (-1)(x+1)^{-2}$$
$$f''(x) = (-2)(-1)(x+1)^{-3} = 2(x+1)^{-3}$$
$$f^{(3)}(x) = (-3)(2)(x+1)^{-4} = (-6)(x+1)^{-4}$$
$$f^{(4)}(x) = (-4)(-6)(x+1)^{-5} = 24(x+1)^{-5}$$
$$f^{(n)}(x) = (-1)^nn!(x+1)^{-n-1}$$
$$f(x) = (x+1)^{-1}$$
$$f^{(n)}(x) = (-1)^nn!(x+1)^{-n-1}$$
$$f^{(0)}(x) = (-1)^00!(x+1)^{-0-1}$$
$$f^{(0)}(x) = 1\cdot1\cdot(x+1)^{-1}$$
$$f^{(0)}(x) = f(x)$$
$$f(x) = (x+1)^{-1}$$
$$f^{(n)}(x) = (-1)^nn!(x+1)^{-n-1}$$
$$f^{(n+1)}(x) = \frac{d}{dx} f^{(n)}(x)$$
$$f^{(n+1)}(x) = \frac{d}{dx} (-1)^nn!(x+1)^{-n-1}$$
$$f^{(n+1)}(x) = (-1)^nn!\frac{d}{dx} (x+1)^{-n-1}$$
$$f^{(n+1)}(x) = (-1)^nn!\cdot (-n-1)(x+1)^{-n-2}$$
$$f^{(n+1)}(x) = (-1)^{n+1}(n+1)!(x+1)^{-(n+1)-1}$$