Kvadratisk nemnar

Integrasjon av rasjonale funksjoner

Hans Georg Schaathun

Oktober 2016

Oppgåve

Finn fylgjande integral

1.

$$ \int \frac{1}{x^2+a^2} dx = $$

2.

$$ \int \frac{1}{x^2-a^2} dx = $$

3.

$$ \int \frac{x}{x^2+a^2} dx = $$

4.

$$ \int \frac{x}{x^2-a^2} dx = $$

$$ \int \frac{x}{x^2+a^2} dx = $$$$u = x^2+a^2a$$
$$ \int \frac12\cdot\frac{1}u du = $$$$\frac{du}{dx} = 2x$$
$$ \frac12\cdot\ln |u|= $$
$$ \frac12\cdot\ln(x^2+a^2) $$

Øvingoppgåve

$$ \int \frac{x}{x^2-a^2} dx = $$

$$ I = \int \frac{1}{x^2+a^2} dx = $$$$ \frac{d}{dx} \tan^{-1} x = \frac1{1+x^2}$$
$$ I = \int \frac1{a^2}\cdot\frac{1}{(x/a)^2+1} dx $$
$$ I = \int \frac1{a^2}\cdot\frac{1}{u^2+1} dx $$$$u = \frac xa$$
$$ I = \int \frac1{a^2}\cdot\frac{1}{u^2+1} adu $$$$a\cdot du = dx$$
$$ I = \frac1a\int \frac{1}{u^2+1} du $$
$$ I = \frac1a\tan^{-1} u + C = \frac{\tan^{-1} \frac xa}a + C$$

$$ \int \frac{1}{x^2-a^2} dx = $$

$$ I = \int \frac{1}{x^2-a^2} dx = \frac{1}{2a}\int \frac1{x-a}-\frac1{x+a}dx $$

$$ I = \frac{1}{2a} \bigg( \int \frac1{x-a}dx-\int\frac1{x+a}dx\bigg) $$

$$ I = \frac{1}{2a} \big( \ln|x-a| + C_1 - \ln|x+a| - C_2\big) $$

$$ I = \frac{1}{2a} \ln\frac{|x-a|}{|x+a|} + C$$