Invers substitusjon med \(\tan\theta/2\)

Integrasjon med trigonometriske funksjonar

Hans Georg Schaathun

Oktober 2016

Oppgåve

$$\int \frac{1}{1+\sin\theta+\cos \theta}d\theta = $$

Løysingsteknikk

$$x=\tan\frac\theta2$$

$$\theta=2\tan^{-1}x$$

$$x=\tan\frac\theta2$$

$$\theta=2\tan^{-1}x$$

$$\cos^2\frac{\theta}2=$$

$$\cos^2\frac{\theta}2 = \frac1{\sec^2\frac\theta2}$$

$$= \frac1{1+\tan^2\frac\theta2}$$

$$\cos^2\frac{\theta}2 = \frac1{1+x^2}$$

$$x=\tan\frac\theta2$$

$$\theta=2\tan^{-1}x$$

$$\cos^2\frac{\theta}2 = \frac1{1+x^2}$$

$$\cos\theta=$$

$$\cos\theta= 2\cos^2\frac\theta2 -1$$

$$= \frac2{1+x^2} - 1 $$

$$\cos\theta= \frac{1-x^2}{1+x^2} $$

$$x=\tan\frac\theta2$$

$$\theta=2\tan^{-1}x$$

$$\cos^2\frac{\theta}2 = \frac1{1+x^2}$$

$$\cos\theta= \frac{1-x^2}{1+x^2} $$

$$\sin\theta=$$

$$\sin\theta= 2\sin\frac\theta2\cos\frac\theta2$$

$$=2\tan\frac\theta2\cos^2\frac\theta2 $$

$$\sin\theta= \frac{2x}{1+x^2} $$

$$x=\tan\frac\theta2$$

$$\theta=2\tan^{-1}x$$

$$\cos^2\frac{\theta}2 = \frac1{1+x^2}$$

$$d\theta = $$

$$\frac{dx}{d\theta} = \frac12\sec^2\frac\theta2$$

$$\frac{d\theta}{dx} = 2\cos^2\frac\theta2 = \frac2{1+x^2} $$

$${d\theta}= \frac2{1+x^2} dx$$

$$\cos\theta= \frac{1-x^2}{1+x^2} $$

$$\sin\theta= \frac{2x}{1+x^2} $$

$${d\theta}= \frac2{1+x^2} dx$$

$$\int \frac{1}{1+\sin\theta+\cos \theta}d\theta $$

$$= \int \frac1 {1+\frac{2x}{1+x^2}+\frac{1-x^2}{1+x^2}} \cdot\frac2{1+x^2} dx$$

$$= \int \frac{2dx} {(1+x^2)+2x+(1-x^2)} $$

$$= \int \frac{2dx}{2+2x} = \int \frac{dx}{1+x} $$

$$= \ln|1+x|+C = \ln|1+\tan\frac\theta2|+C $$