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Abstract

A greedy 1-subcode is a one-dimensional subcode of minimum (sup-
port) weight. A greedy r-subcode is an r-dimensional subcode with mini-
mum support weight under the constraint that it contain a greedy (r−1)-
subcode. The r-th greedy weight er is the support weight of a greedy
r-subcode. The greedy weights are related to the weight hierarchy. We
use recent results on the weight hierarchy of product codes to develop a
lower bound on the greedy weights of product codes.

1 Introduction

Generalised Hamming weights have received a lot of attention after Victor Wei's
paper [11] in 1991. Chen and Kløve [2, 1] have introduced the greedy weights,
inspired by [3]. The greedy weights coincide with the generalised Hamming
weights if and only if the code satis�es the chain condition [12].

Recent works [7, 5, 10] have treated the generalised Hamming weights of
product codes. In this paper we build on the technique from [7] to give a lower
bound on the greedy weights of product codes, in terms of the greedy weights of
the component codes. We also give an analogous result for the top-down greedy
weights introduced in [8].

There are several reasons for studying the greedy weights, even if few results
have yet appeared. Recent research [9] indicates that greedy weights are valuable
for limiting the search spaces for exhaustive searches for optimal codes. It will
also be interesting to research possible relations between greedy weights and
trellis complexity of codes.

The layout of the paper is as follows. In this section we will present some
basic notation and the result on weight hierarchies. This result is included to
show how parallel the new result is. In Section 2 we de�ne the greedy weights
and present the new result. Section 3 gives some preliminaries for the proof,
which appears in Section 4.
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1.1 Product Codes and Weight Hierarchies

An [n, k] code is a k-dimensional subspace C 5 V of some n-dimensional vector
space V. The support of a vector c = (c1, c2, . . . , cn) ∈ V is the set

χ(c) := {i | ci 6= 0},

and the support of a subset S ⊆ V is the set

χ(S) :=
⋃
c∈S

χ(c).

The weight hierarchy of the code C 5 V is the sequence

(d1(C), d2(C), . . . , dk(C)),

where
dr(C) := min{#χ(D) | D 5 C,dimD = r}.

Clearly d1(C) is the minimum distance, and for convenience we have d0(C) = 0.
Let C1 be an [n1, k1] code and C2 an [n2, k2] code over the same �eld F. The

product code C1 ⊗C2 is the tensor product of C1 and C2 as vector spaces over
F. In other words

C1 ⊗ C2 = 〈a⊗ b | a ∈ C1, b ∈ C2〉,

where

a⊗ b = (aibj | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2),
a = (a1, a2, . . . , an1),
b = (b1, b2, . . . , bn2).

The product code is an [n1n2, k1k2] code.
De�ne

Mt := {i = (i1, i2, . . . , it−1) | 1 ≤ ij ≤ kj , 1 ≤ j < t}.

De�nition 1

Let π be a mapMt → {0, 1, . . . , kt}. We call π a (k1, k2, . . . , kt)-partition of r
if

1.
∑

i∈Mt
π(i) = r.

2. π is a decreasing function in each coordinate, i.e.

π((i1, . . . , ij , . . . , it−1)) ≤ π((i1, . . . , ij − 1, . . . , it−1)),

for all j where 0 < j < t and 1 < ij .

Wei and Yang [12] introduced an expression d∗r to serve as a bound. This
expression was generalised for products of more than two codes in [5]:

d∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇(π) | π ∈ P(k1, k2, . . . , kt; r)

}
,
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where

∇(π) =
∑

i∈Mt

t−1∏
j=1

(dij (Cj)− dij−1(Cj))dπ(i)(Ct).

The chain condition says that there exists a sequence of subcodes

{0} = D0 < D1 < . . . < Dk = C,

such that Di has dimension i and weight di(C). Many good codes satisfy the
chain condition, such as the Hamming, Reed-Muller, MDS, and the extended
Golay codes. Nevertheless, most codes do not satisfy this condition [3].

Theorem 1

If C1, C2, . . . , Ct are arbitrary linear codes, then

dr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ d∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct).

Equality holds if all the component codes satisfy the chain condition.

This theorem was �nally proved in [10]. Partial results had appeared in
[12, 7, 5].

2 Greedy weights

2.1 De�nitions

The greedy weights were introduced in [2, 1], inspired by some other parameters
from [3]. The greedy weights are motivated by the following problem. Consider
the Wire-Tap Channel of Type II [6] and a `greedy' adversary. That is to say
that the adversary will �rst read bits to get one information bit as soon as
possible. Having obtained i information bits, he will try to get the (i+ 1)-st bit
as soon as possible. The r-th greedy weight is the least number of bits required
to obtain r information bits by this approach.

The top-down greedy weights were introduced in [7], and it was shown that
the greedy weights of C is determined by the top-down greedy weights of the
dual code.

A (bottom-up) greedy 1-subcode is a minimum 1-subcode. A (bottom-up)
greedy r-subcode, r ≥ 2, is any r-dimensional subcode containing a (bottom-
up) greedy (r−1)-subcode, such that no other such code has lower weight. The
r-th greedy weight er is the weight of a greedy r-subcode

We have obviously that d1 = e1 and dk = ek, for any k-dimensional code.
For most codes e2 > d2 [3]. The chain condition is satis�ed if and only if er = dr
for all r.

A top-down greedy k-subcode is C. A top-down greedy r-subcode is a sub-
code of dimension r, contained in a greedy (r+1)-space, such that no other such
subcode has lower weight. The rth top-down greedy weight ẽr is the weight of
a top-down greedy r-subcode.

Remark 1

The top-down greedy weights share many properties with the (bottom-up)
greedy weights. For all codes ẽr ≥ dr. The chain condition holds if and only if
ẽr = dr for all r. In general, ẽr may be equal to, greater than, or less than er.
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2.2 The result

De�ne the greedy di�erences

εi(C) := ek−i(C)− ek−1−i(C),
ε̃i(C) := ẽk−i(C)− ẽk−1−i(C).

We de�ne the greedy analogues of ∇ as follows.

∇E(π) :=
∑

i∈Mt

eπ(i)(Ct)
t−1∏
j=1

εkj−ij (Cj),

∇̃E(π) :=
∑

i∈Mt

ẽπ(i)(Ct)
t−1∏
j=1

ε̃kj−ij (Cj).

We also de�ne e∗r and ẽ
∗
r analogously to d∗r .

e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇E(π) | π ∈ P(k1, k2, . . . , kt; r)

}
,

ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇̃E(π) | π ∈ P(k1, k2, . . . , kt; r)

}
.

Theorem 2

We have

er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct).

Remark 2

The bound in the conjecture may or may not be met with equality. This is
obvious if we consider chained component codes. Then dj(Ci) = ej(Ci), and
dr = e∗r . If the product code is chained, then er = dr = e∗r . Otherwise er >
dr = e∗r for some r. It was shown in [7] that such a product code may or may
not be chained.

3 Preliminaries

3.1 Projective multisets

A projective multiset is a collection of projective points which are not necessarily
distinct. We usually de�ne it as a map

γ : Pk−1 → {0, 1, 2, . . .},

where γ(x) is the number of times x occurs in the collection. This is extended
for any S ⊆ Pk−1 such that

γ(S) =
∑
x∈S

γ(x).

We call γ(S) the value of S.
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Let C be a linear code and G a generator matrix for C. Codes obtained from
C by permuting columns of G or by replacing some columns with proportional
columns are equivalent to C. The projective multiset γC corresponding to C is
the multiset of columns of G, considered as projective points. The multiset γC
de�nes C up to equivalence.

Helleseth et al. [4] proved that there is a one-to-one correspondence between
subcodes D 5 C and subspaces Π 5 Pk−1 such that

dim Π + dimD = k − 1,
γC(Π) + w(D) = n.

This implies that

dr(C) = n−max{γC(Π) | Π 5 Pk−1,dim Π = k − 1− r}.

Let D′ 5 D 5 C, and let Π and Π′ be projective subspaces corresponding to D
and D′ respectively. Then it follows by the proof in [4] that Π 5 Π′.

If D is a (bottom-up) greedy (k−1−r)-subcode, then we call the correspond-
ing subspace Π a (bottom-up) greedy r-space. A (bottom-up) greedy r-space can
be equivalently de�ned by the following recursion. The only (bottom-up) greedy
(k − 1)-space is Pk−1. A (bottom-up) greedy r-space is r-space contained in a
(bottom-up) greedy (r + 1)-space such that no other such subspace has higher
value.

Analogously, a top-down greedy r-space correspond to a top-down greedy
(k− 1− r)-subcode. The only top-down greedy (−1)-space is the empty set. A
top-down greedy r-space is an r-space containing a top-down greedy (r−1)-space
such that no other such subspace has higher value.

3.2 The product of Projective Multisets

The map (a, b) 7→ a ⊗ b, which was used to de�ne the tensor product, is well-
de�ned also for projective points. It de�nes the injective map known as the
Segre embedding

σ : Pk1−1 × Pk2−1 ↪→ P k1k2−1.

The image under the Segre embedding is called the Segre variety. This embed-
ding is well known in algebraic geometry.

Proposition 1

Let γ1 and γ2 be the projective multisets corresponding to the codes C1 and
C2 respectively. Then γ := σ(γ1, γ2) is the projective multiset corresponding to
C1 ⊗ C2.

We give a precise explanation of σ(γ1, γ2). It means that γ(a⊗b) = γ1(a)γ2(b),
and γ(x) = 0 for all x which are not on the Segre variety. Proposition 1 was
proved in [7], but it should not be to hard to verify it by studying generator
matrices of C1, C2, and C.

3.3 Rede�ning the problem

Analogously to the approach for weight hierarchies we will now reformulate the
problem in terms of projective multisets.
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For every π ∈ P(k1, k2, . . . , kt; r), the dual partition [10] is de�ned as

π∗(i) := kt − π((k1 + 1, k2 + 1, . . . , kt−1 + 1)− i).

Note that π∗ ∈ P(k1, k2, . . . , kt; k − r) where k =
∏t
i=1 ki, and if ψ = π∗, then

π = ψ∗.
We de�ne, analogously to ∆i(C) in [10],

Ei(C) :=
i∑

j=0

εi = ek(C)− ek−1−i(C), (1)

Ẽi(C) :=
i∑

j=0

ε̃i = ẽk(C)− ẽk−1−i(C). (2)

Analogously to ∆(π) in [10] we de�ne

E(π) :=
∑

i∈Mt

Eπ(i)−1(Ct)
t−1∏
j=1

εij−1(Cj), (3)

Ẽ(π) :=
∑

i∈Mt

Ẽπ(i)−1(Ct)
t−1∏
j=1

ε̃ij−1(Cj). (4)

Lemma 1

The above de�nition is equivalent to

E(π) = n−∇E(π∗),

Ẽ(π) = n− ∇̃E(π∗).

Proof: We prove the �rst statement explicitly. The second statement is
proved similarly by replacing εi(Cj) with ε̃i(Cj).

First note that

∇E(π∗) =
∑

i∈Mt

eπ∗(i)(Ct)
t−1∏
j=1

εkj−ij (Cj) =
∑

i∈Mt

eπ∗(k+1−i)(Ct)
t−1∏
j=1

εij−1(Cj),

where k denotes an all-k vector, and 1 an all-1 vector. Hence

∇E(π∗) =
∑

i∈Mt

ekt−π(i)(Ct)
t−1∏
j=1

εij−1(Cj).

We combine this with (3) to get

E(π) +∇E(π∗) =
∑

i∈Mt

(Eπ(i)−1(Ct) + ekt−π(i)(Ct))
t−1∏
j=1

εij−1(Cj)

=nt
∑

i∈Mt

t−1∏
j=1

εij−1(Cj).
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It only remains to prove that

∑
i∈Mt

t−1∏
j=1

εij−1(Cj) = n1 · n2 · . . . · nt−1. (5)

This is obviously true if t = 2, so we prove it by induction. We have

∑
i∈Mt

t−1∏
j=1

εij−1(Cj) =
kt−1∑
it−1=1

εit−1−1(Ct−1)
∑

i∈Mt−1

t−2∏
j=1

εij−1(Cj)

= nt−1

∑
i∈Mt−1

t−2∏
j=1

εij−1(Cj).

Hence (5) follows by induction, and the lemma is proved. �
Similarly to e∗r and ẽ∗r , we de�ne E

∗
r and Ẽ∗r , which will give bounds on Er

and Ẽr.

E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) := max{E(π) | π ∈ P(k1, k2, . . . , kt; r + 1)},
Ẽ∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) := max{Ẽ(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

Lemma 2

The following two statements are equivalent

er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
Er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct).

Also the following two equations are equivalent

ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
Ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ Ẽ∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct).

Proof: By Lemma 1, we get that

E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) + e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) = n.

By de�nition Er + er = n. Hence the �rst equivalence follows. The second
equivalence is proved in the same way. �

3.4 The associated partition

Let γi be the projective multiset corresponding to Ci. Let C = C1⊗C2⊗. . .⊗Ct,
where dimC = k, and let C ′ = C2⊗ . . .⊗Ct with dimC ′ = k′. Let γ and γ′ be
the projective multiset corresponding to C and C ′ respectively.

The associated partition was introduced in [10]. We de�ne it �rst in the case
where t = 2.

De�nition 2

Let Π 5 Pk−1. For 0 ≤ i ≤ k1 − 1, let θi(Π) be the set of points p ∈ Pk2−1 such

that there is an i-space ΦiΠ(p) 5 Pk1−1 with ΦiΠ(p) ⊗ p ⊆ Π. The associated
partition of Π is given by

π(Π)(i) = dim〈θi−1(Π)〉+ 1.
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Obviously θi(Π) ⊆ θi−1(Π). Hence π(Π) is indeed a partition.
The i-th sub-partition π|i of π, is de�ned by

π|i(i2, i3. . . . , it−1) = π(i, i2, i3, . . . , tt−1).

We can now de�ne the associated partition for arbitrary t by recursion.

De�nition 3

Let Π 5 Pk−1. For 0 ≤ i ≤ k1 − 1, let θi(Π) be the set of points p ∈ Pk′−1

such that there is an i-space ΦiΠ(p) 5 Pk1−1 with ΦiΠ(p)⊗ p ⊆ Π. We de�ne the
associated partition π(Π) by its sub-partitions π(Π)|i = π(〈θi−1(Π)〉).

It is clear that π(Π) ∈ P(k1, k2, . . . , kt; r+1) for some r where dim Π ≥ r [10].
We de�ne Θi(Π) := 〈θi(Π)〉. For every point p ∈ Pk′−1 we let ΦΠ(p) = ΦiΠ(p)
for the largest i for which this is de�ned.

We de�ne a partial ordering on the set of partitions, such that π ≤ π′ if and
only if π(i) ≤ π′(i) for all i ∈Mt.

4 The proof

4.1 The Simple Case

We start with the simple case where t = 2. We shall proceed by induction on t
in Section 4.2.

De�nition 1

Let Π 5 PG(k − 1, q) and π = π(Π) ∈ P(k1, k2; r + 1). We call Π a normal
subspace associated with π if

1. all the 〈Θi(Π)〉 are greedy subspaces;

2. for each i and for all x ∈ 〈Θi〉\〈Θi+1〉 with γ2(x) > 0, ΦΠ(x) is a greedy
i-space; and

3. dim Π = r.

Note that Part 2 of the de�nition implies that γ2(x) = 0 for all x ∈ 〈Θi〉\Θi

and consequently that γ2(Θi) = γ2(〈Θi〉).

Lemma 3

Let Π be a normal r-space, and let Π′′ < Π. Then, for any partition π′ ∈
P(k1, k2; r) such that π(Π′′) ≤ π′ < π(Π), we have γ(Π′′) ≤ E(π′). Equality
holds if and only if Π′′ is a normal subspace associated with π′.

Note that since Π is a normal subspace, Σπ(Π) = r + 1, and Σπ(Π′) ≤
dim Π′′ + 1 < r + 1. Hence π(Π′′) < π(Π) and there exists indeed some π′.
Proof: We write Θ′′i = Θi(Π′′) and Θi = Θi(Π). Observe that

γ(Π′′) =
k1−1∑
i=0

∑
x∈Θ′′i \Θ′′i+1

γ2(x)γ1(ΦΠ′′(x)). (6)
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We choose a partition π′ according to the lemma. There is a unique s such
that π′(s+ 1) = π(s+ 1)− 1. Let Θ′s be an arbitrary subspace such that

Θ′′s ⊆ Θ′s < 〈Θs〉,
dim Θ′s = dim Θs − 1 = π′(s+ 1)− 1.

Since 〈Θs〉 is a greedy subspace, we get that γ(Θ′s) ≤ Eπ′(s+1)−1(C2). Write
Θ′i = Θi for all i 6= s. Thus we get, for all i,

Θ′′i ⊆ Θ′i, (7)

γ2(Θ′′i ) ≤ γ2(Θ′i) ≤ Eπ′(i+1)−1(C2). (8)

If y ∈ Θs\Θ′s, then ΦΠ′′(y) < ΦΠ(y). Since ΦΠ(y) is a greedy s-space
whenever γ2(y) 6= 0, we get that

γ1(ΦΠ′′(y))γ2(y) ≤ Es−1(C1)γ2(y).

Clearly ΦΠ′′(x) 5 ΦΠ(x) for all x ∈ PG(k2 − 1, q), and

γ1(ΦΠ(x))γ2(x) ≤ Ei(C1)γ2(x), ∀x ∈ Θi\Θi+1.

Hence we get for any i that

γ1(ΦΠ′′(x))γ2(x) ≤ Ei(C1)γ2(x), ∀x ∈ Θ′i\Θ′i+1. (9)

Thus we get from (6) that

γ(Π′′) ≤
k1−1∑
i=0

∑
x∈Θ′′i \Θ′′i+1

γ2(x)Ei(C1). (10)

This may be simpli�ed further to

γ(Π′′) ≤
k1−1∑
i=0

Ei(C1)γ2(Θ′′i \Θ′′i+1)

=
k1−1∑
i=0

Ei(C1)(γ2(Θ′′i )− γ2(Θ′′i+1))

=
k1−1∑
i=0

Ei(C1)γ2(Θ′′i )−
k1∑
i=1

Ei−1(C1)γ2(Θ′′i ).

Now observe that Θ′′k1 is the empty set, and ε0(C1) = E0(C1). Hence

γ(Π′′) ≤
k1−1∑
i=0

εi(C1)γ2(Θ′′i ) ≤
k1∑
i=1

εi−1(C1)Eπ′(i)−1(C2) = E(π′),

by (8). This proves the bound in the lemma.
It remains to prove that equality depends on Π′′ being a normal subspace

associated with π′. Assume therefore that γ(Π′′) = E(π′). To obtain this,
we must have equality in (9), which means that ΦΠ′′(x)) is a greedy i-space
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whenever γ2(x) > 0, proving Property 2 in the de�nition. Equality is also
required in (8), which implies that 〈Θ′′i 〉 must be a greedy subspace of dimension
π′(i+ 1)− 1, proving Property 1 and the fact that π(Π′′) = π′.

Finally we observe that dim Π′′ ≤ r − 1 since it is a proper subspace of Π.
Also dim Π′′ ≥ Σπ′ − 1 = r − 1. Hence dim Π′′ = r − 1, which is the third
property in the de�nition. The lemma follows by induction. �

De�nition 2

A greedy basis of PG(ki−1, q) is a basis p0, p1, . . . , pk1−1 such that 〈p0, p1, . . . , pr〉
is a greedy r-space for each r.

Lemma 4

Given a �xed greedy basis for each space PG(k1 − 1, q) and PG(k2 − 1, q), there
is a well-de�ned normal subspace Ππ associated with every partition π, such
that if π′ ≤ π, then Ππ′ 5 Ππ.

Proof: Let b0, b1, . . . , bk2−1 be the greedy basis for PG(k2 − 1, q). Write

Ψi = 〈b0, b1, . . . , bi〉.

Let p0, p1, . . . , pk1−1 be the greedy basis for PG(k1 − 1, q). We de�ne Ππ by the
following formula,

Ππ = 〈pi ⊗Ψπ(i+1)−1 | 0 ≤ i < k1〉.

It is straightforward to verify the properties of Ππ. �

Proposition 2

If Π 5 PG(k − 1, q) is a greedy subspace of dimension r, then Π is a normal
subspace and γ(Π) = E(π) where π = π(Π) ∈ P(k1, k2; r + 1)

We omit the proof, which is exactly identical to that of Proposition 3.

Corollary 1

For all codes C1 and C2, we have

Er(C1 ⊗ C2) ≤ max{E(π) | π ∈ P(k1, k2; r + 1)}.

4.2 The General Case

We shall generalise the results from the last section by induction on t. We de�ne
normal subspaces recursively as follows.

De�nition 3

Let Π 5 PG(k − 1, q) and π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1). We call Π a
normal subspace associated with π if

1. for each i, 〈Θi(Π)〉 is a normal subspace associated with π|i+1;

2. for each i and for all x ∈ 〈Θi〉\〈Θi+1〉 with γ′(x) > 0, ΦΠ(x) is a greedy
i-space; and

3. dim Π = r.
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Lemma 5

Let Π be a normal r-space, and let Π′′ < Π be a subspace. Then for any partition
π′ ∈ P(k1, k2, . . . , kt; r) such that π(Π′′) ≤ π′ < π(Π), we have γ(Π′′) ≤ E(π′).
Equality holds if and only if Π′′ is a normal subspace associated with π′.

Note that there must exist π′ by the same reasoning used in conjunction
with Lemma 3.
Proof: This was proved for t = 2 in Lemma 3. We assume that it holds for
t− 1 and prove it for t.

We write Θ′′i = Θi(Π′′) and Θi = Θi(Π). Observe that

γ(Π′′) =
k1−1∑
i=0

∑
x∈Θ′′i \Θ′′i+1

γ′(x)γ1(ΦΠ′′(x)). (11)

We choose an arbitrary partition π′ according to the lemma. We write
ui := Σπ|i+1 − 1 and u′i := Σπ′|i+1 − 1 for brevity. There is a unique s such
that u′s = us − 1. Let Θ′s be an arbitrary subspace such that

Θ′′s ⊆ Θ′s < 〈Θs〉,
dim Θ′s = dim〈Θs〉 − 1 = u′s.

Since 〈Θs〉 is a normal subspace, we get that γ′(Θ′s) ≤ E(π′|s+1), by the induc-
tion hypothesis. Write Θ′i = Θi for all i 6= s. Thus we get, for all i,

Θ′′i ⊆ Θ′i, (12)

γ′(Θ′′i ) ≤ γ′(Θ′i) ≤ E(π′|i+1). (13)

If y ∈ Θs\Θ′s, then ΦΠ′′(y) < ΦΠ(y). Since ΦΠ(y) is a greedy subspace of
dimension s whenever γ′(y) > 0, we get that

γ1(ΦΠ′′(y))γ′(y) ≤ Es−1(C1)γ′(y).

Clearly ΦΠ′′(x) 5 ΦΠ(x) for all x ∈ PG(k′ − 1, q), and

γ1(ΦΠ(x))γ′(x) ≤ Ei(C1)γ′(x), ∀x ∈ Θi\Θi+1.

Hence we get for any i that

γ1(ΦΠ′′(x))γ′(x) ≤ Ei(C1)γ′(x), ∀x ∈ Θ′i\Θ′i+1. (14)

From (11) we �nd that

γ(Π′′) ≤
k1−1∑
i=0

∑
x∈Θ′′i \Θ′′i+1

γ′(x)Ei(C1). (15)

This may be simpli�ed further to

γ(Π′′) ≤
k1−1∑
i=0

Ei(C1)γ′(Θ′′i \Θ′′i+1)

=
k1−1∑
i=0

Ei(C1)(γ′(Θ′′i )− γ′(Θ′′i+1))

=
k1−1∑
i=0

Ei(C1)γ′(Θ′′i )−
k1∑
i=1

Ei−1(C1)γ′(Θ′′i ).
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Now observe that Θ′′k1 is the empty set, and ε0(C1) = E0(C1). Hence

γ(Π′′) ≤
k1−1∑
i=0

εi(C1)γ′(Θ′′i ) ≤
k1∑
i=1

εi−1(C1)E(π′|i+1) = E(π′),

by (13) and the induction hypothesis. This proves the bound in the lemma.
It remains to prove that equality depends on Π′′ being a normal subspace

associated with π′. Assume therefore that γ(Π′′) = E(π′). Then we must have
equality in (13), which requires equality in (12). It follows that π(Π′′) = π′.
Another necessary condition for equality in (13), is that all the Θ′i be greedy
subspaces. By the induction hypothesis it follows that Θi is a normal subspace
associated with π′|i+1, which is Property 1 in De�nition 3

We must also have equality in (15), which in turn depends on equality in
(14). Hence ΦΠ′′(x) must be a greedy subspace for all x ∈ PG(k′ − 1, q) such
that γ′(x) > 0. This proves Property 2 in De�nition 3.

Finally we observe that dim Π′′ ≤ r − 1 since it is a proper subspace of Π.
Also dim Π′′ ≥ Σπ′ − 1 = r − 1. Hence dim Π′′ = r − 1, which is the third
property in the de�nition. The lemma follows by induction. �

Lemma 6

Given a �xed greedy basis for each space PG(ki − 1, q), there is a well-de�ned
normal subspace Ππ associated with every partition π, such that if π′ ≤ π, then
Ππ′ 5 Ππ.

Proof: This holds for t = 2 by Lemma 4. We prove it for all t by induc-
tion. Therefore we assume that for every πr ∈ P(k2, k3, . . . , kt; r + 1), there
is a well-de�ned normal subspace Ψπr

5 PG(k′ − 1, q) associated with πr. Let
p0, p1, . . . , pk1−1 be a greedy basis for PG(k1 − 1, q).

The Ππ may be given by the following formula,

Ππ = 〈pi−1 ⊗Ψπ|i | 1 ≤ i ≤ k1〉.

It is straightforward to verify the properties of this subspace. �

Proposition 3

If Π 5 PG(k − 1, q) is a greedy subspace of dimension r, then Π is a normal
subspace and γ(Π) = E(π) where π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1).

Proof: Note that PG(k − 1, q) is a normal subspace associated with π where
π(i) = kt for all i ∈ Mt. Also PG(k − 1, q) is the unique greedy (k − 1)-space.
Hence the lemma holds for r = k − 1. Assume that the lemma holds for r. We
will prove that then it also holds for r − 1.

Let Π and Π′ be greedy subspaces of dimensions r and r−1 respectively, such
that Π′ < Π. By the inductive hypothesis, Π is a normal subspace associated
with some partition π. Also write π′ = π(Π′). By Lemma 5, γ(Π′) ≤ E(π′′) for
every partition π′′ ∈ P(k1, k2, . . . , kt; r) with π′ ≤ π′′ < π.

By Lemma 4, there exists, for every such partition π′′, a normal subspace
Ππ′′ < Π of value E(π′′), so Er−1 ≥ E(π′′), and thus γ(Π′) = E(π′′) and Π′ is
a normal subspace by Lemma 5. The lemma follows by induction. �
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Corollary 1

For any family codes C1, C2, . . . , Ct, we have

Er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ max{E(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

This proves the �rst bound of Theorem 2. We can in fact phrase a stronger
result. We know that equality holds for r = k − 1, since Ek−1 = ∆k−1. Let
Pr ⊆ P(k1, k2, . . . , kt; r + 1) be the set of partitions achieving the maximum in
the corollary. Then we have that

Er(C) = max{E(π) | π ∈ P(k1, k2, . . . , kt; r + 1),∃π′ ∈ Pr+1, π ≤ π′}.

The problem with such an expression is of course that we must compute all
the Er in sequence, and we must �nd all partitions achieving maximum in each
step.

4.3 Top-down Greedy Weights

The proof for top-down greedy weights is very similar to that for bottom-up
greedy weights (and just as long). We will only list the de�nitions and the main
lemmata for the induction step. The proofs can be �lled in by following the
pattern of the preceding sections.

De�nition 4

Let Π 5 PG(k − 1, q) and π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1). We call Π a
top-down normal subspace associated with π if

1. for each i, Θi(Π) is a top-down normal subspace associated with π|i+1 (or
if t = 2, a top-down greedy i-space).

2. for each i and for all x ∈ Θi\Θ′i with γ′(x) > 0, ΦΠ(x) is a top-down
greedy i-space.

3. dim Π = r.

Lemma 7

Let Π be a top-down normal r-space, and let Π′′ > Π be an (r + 1)-space.
Then γ(Π′′) ≤ E(π(Π′′)). Equality holds if and only if Π′′ is a top-down normal
subspace.

De�nition 5

A top-down greedy basis PG(ki − 1, q) is a basis p0, p1, . . . , pk1−1 such that
〈pi | 0 ≤ i ≤ r〉 is a top-down greedy r-space.

Lemma 8

Given a �xed top-down greedy basis for each space PG(ki − 1, q), there is a
well-de�ned top-down normal subspace Ππ associated with every partition π,
such that if π′ ≤ π, then Ππ′ 5 Ππ.

Proposition 4

If Π 5 PG(k − 1, q) is a top-down greedy subspace of dimension r, then Π is a

normal subspace and γ(Π) = Ẽ(π) where

π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1).

13



Corollary 2

For any family codes C1, C2, . . . , Ct, we have

Ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ max{Ẽ(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

This proves the second bound of Theorem 2.
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