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Abstrat

The weight of a ode is the number of oordinate positions where

no odeword is zero. The rth minimum weight dr is the least weight

of any r-dimensional subode. Wei and Yang gave a onjeture about

the minimum weights for some produt odes. In this paper we will

�nd a relation between produt odes and the Segre embedding of a

pair of projetive systems, and we use this to prove the onjeture.
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1 Introdution

An [n, k] ode is a k-dimensional subspae C ⊆ V of some n-dimensional

vetor spae V. It an be de�ned by a k × n matrix G, alled the generator

matrix. The message spae M is a k-dimensional vetor spae, and G gives

a linear transformation M→ V.

The rows of G is a basis for C. The olumns an be viewed as linear forms,

i.e. vetors inM

∗
, the dual spae ofM. This means that if a = (a1, . . . ak) is

the rth olumn in G, then a = a1x1 + . . .+akxk is a linear form. If m ∈M is

a message word, then a(m) is the rth oordinate in the orresponding ode

word.

We an now see that a linear ode may be desribed by either a basis

or a system of linear forms. By a system we will in this paper mean a

olletion with possible repetition of elements. Codes are onsidered to be

equivalent if one an be obtained from the other by permuting oordinate

positions, multiplying ertain oordinates by a non-zero salar, or deleting

zero positions. This orresponds to reordering the vetor system, replaing

linear forms by proportional forms, and deleting zero forms. We onlude

that the linear forms may be represented by projetive points, and in this

ase we talk about a projetive system (or projetive multiset [3℄) rather

than a vetor system.

Given a projetive system X ⊆ P

k−1
, the value ν(x) of x ∈ Pk−1

is

the number of ourrenes of x in X. This gives a map ν : P

k−1 →
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{0, 1, 2, . . .}, alled the value assignment desribing X. If S ⊆ P

k−1
, let

ν(S) =
∑

x∈S ν(x).
The weight w(C) of a ode C is the number of oordinate positions

where some odeword is non-zero. The rth minimum weight dr(C) is the

least weight of an r-dimensional subode. Clearly d0 = 0, and d1 = d is the

usual minimum distane. The sequene (d1, d2, . . . dk) is known as the weight
hierarhy, and equivalent odes have the same weight hierarhy. Sine every

ode is equivalent to a ode without zero positions, we assume that dk = n

for all odes enountered.

The weight hierarhy (d1, d2, . . . dk) is also de�ned for a projetive system

X ⊆ Pk−1
desribed by ν in that

dr := ν(Pk−1) − max{ν(Π) | Π ⊆ Pk−1, codim Π = r}.

The orrespondene between projetive systems and linear odes preserves

weight hierarhies [6, 8℄.

A produt ode A ⊗ B is the tensor produt of two linear odes, A and

B. The tensor produt is generated by the vetors on the form

x⊗ y := (xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m),

where x = (x1, . . . xn) ∈ A and y = (y1, . . . ym) ∈ B. Sine a linear form

an be viewed as a vetor, we will also write g ⊗ h for two linear forms g

and h. When A and B are [nA, kA] and [nB, kB ] linear odes, A ⊗ B is an

[nAnB, kAkB ] ode.
The weight hierarhy has been studied by several researhers during the

last deade, and there have been attempts to give a formula to express the

weight hierarhy of a produt ode in terms of the weight hierarhies of

the omponent odes. Wei and Yang [9℄ gave a onjeture for the weight

hierarhy of hained odes.

De�nition 1 (Chain Condition)

A ode C is hained if there is a hain of subodes

{0} = D0 ⊆ D1 ⊆ . . . ⊆ Dk = C,

suh that dimDr = r and w(Dr) = dr.

De�nition 2

Given two linear odes A and B, let

d∗r(A ⊗ B) = min

{ s
∑

i=1

(di(A) − di−1(A))dti (B)

∣

∣

∣

∣

1 ≤ ts ≤ . . . ≤ t1 ≤ kB , s ≤ kA,

s
∑

i=1

ti = r

}

.
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Wei and Yang onjetured that dr = d∗r for the produt of hained odes.

Barbero and Tena [1℄ proved this for r ≤ 4. The main result of this paper is

the following theorem, whih implies the onjeture.

Theorem 1

For any two linear odes A and B, dr(A⊗B) ≥ d∗r(A⊗B) for 0 ≤ r ≤ kAkB .

If A and B are hained odes, then equality holds for all r.

2 Proof of the main result

We will prove Theorem 1 in terms of projetive systems. Given two odes

A and B, and the orresponding projetive systems, we have to �nd the

projetive system orresponding to A ⊗ B. This will be the �rst step in the

proof.

Lemma 1 (Basis lemma)

If {xi | i = 1, . . . kA} and {yi | i = 1, . . . kB} are bases for A and B, then

{xi ⊗ yj | 1 ≤ i ≤ kA, 1 ≤ j ≤ kB} is a basis for A ⊗ B.

This is a well-known fat, so we omit the proof. With regard to produt

odes, it basially says that we an form a generator matrix for A ⊗ B, by

taking as rows all possible produt x ⊗ y, where x is a row in a generator

matrix of A, and y is a row in a generator matrix for B.

The following proposition says that we an equivalently form the gener-

ator matrix by taking produts of olumns.

Proposition 1

If A and B are linear odes de�ned by the vetor systems YA and YB, then

the vetor system de�ning C := A ⊗ B is

YC = YA ⊙ YB := {x ⊗ y | x ∈ YA,y ∈ YB}.

Proof: For any vetor x we write x[i] for its ith oordinate. Let {ai} and
{bj} be bases for A and B respetively, and {cij = ai ⊗ bj} the indued

basis for C. Let the ode parameters be [nA, kA] for A, [nB, kB ] for B, and

[nC , kC ] for C.

Now, any odeword c ∈ C is written as

kA
∑

i=1

kB
∑

j=1

m[i, j]cij ,

where m is a message word, i.e. a kC-dimensional vetor over the base �eld.

The oordinates are given as

c[a, b] =

kA
∑

i=1

kB
∑

j=1

m[i, j]cij [a, b] =

kA
∑

i=1

kB
∑

j=1

m[i, j]ai[a]bj [b] = gab(m),
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where gab is a linear form in kC variables. In fat gab = gA
a ⊗ gB

b , where

gA
a =

∑

ai[a]xi is the ath olumn of the generator matrix of A, and gB
b =

∑

bi[b]xi the bth olumn of the generator matrix of B. �

Corollary 1

If A and B are linear odes de�ned by the projetive systems XA and XB ,

then C := A⊗B is de�ned by XC = σ(XA,XB), where σ : PkA−1×PkB−1 →
P

kAkB−1
is the Segre embedding.

The Segre embedding is de�ned by (a, b) 7→ a ⊗ b, and it is well known

that it is bijetive on its image, whih is alled a Segre variety Y . In other

words, a point c ∈ PkAkB−1
an be deomposed as c = a⊗ b, a ∈ PkA−1

and

b ∈ PkB−1
, if and only if c ∈ Y . The deomposition is unique when it exists.

Corollary 2

Let νA, νB , and νC be the value assignments desribing XA ⊆ PkA−1
, XB ⊆

P

kB−1
, and XC ⊆ PkAkB−1

respetively. We have:

νC(a ⊗ b) = νA(a) · νB(b), ∀a ∈ PkA−1,∀b ∈ PkB−1, (1)

νC(c) = 0, ∀c 6∈ Y.

We de�ne the di�erene sequene of a linear ode or projetive system

to be (δ0, δ1, . . . δk−1), where

δi := dk−i − dk−i−1.

We note that in the projetive system orresponding to C, the maximum

value of any r-spae is

∆r(C) :=

r
∑

i=0

δi(C) = dk(C) − dk−r−1(C). (2)

We reformulate the expression for d∗r . First we note that we an �x

s = kA and allow the ti to be zero:

d∗r(A ⊗ B) = min

{ kA
∑

i=1

(di(A) − di−1(A))dti (B)

∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

.
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Now we write

d∗r(A ⊗ B) = min

{ kA
∑

i=1

δkA−i(A)

(

dk(B) −

kB−ti−1
∑

j=0

δj(B)

)∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

,

d∗r(A ⊗ B) = dk(A)dk(B) − max

{ kA
∑

i=1

δkA−i(A)

kB−ti−1
∑

j=0

δj(B)

∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

.

We de�ne ∆∗

r from d∗r, just as ∆r is de�ned from dr:

∆∗

r(A ⊗ B) := dk(A)dk(B) − d∗kC−r−1(A ⊗ B). (3)

We get:

∆∗

r(A ⊗ B) = max

{ kA−1
∑

i=0

δi(A)

kB−t′
i
−1

∑

j=0

δj(B)

∣

∣

∣

∣

0 ≤ t′0 ≤ . . . ≤ t′kA−1 ≤ kB ,

kA−1
∑

i=0

t′i = kC − r − 1

}

,

where t′i = tkA−i. We rearrange the expression to get:

∆∗

r(A ⊗ B) = max

{ kA−1
∑

i=0

δi(A)∆t′′
i
−1(B)

∣

∣

∣

∣

0 ≤ t′′kA−1 ≤ . . . ≤ t′′0 ≤ kB ,

kA−1
∑

i=0

t′′i = r + 1

}

,

(4)

where t′′i = kB−t′i. Note that ∆i = 0 for i < 0, and ∆∗

i (A⊗B) > ∆∗

i−1
(A⊗B)

for 0 ≤ i ≤ kC − 1.

Lemma 2

For any two linear odes A and B, the following are equivalent for r′ =
0, 1, . . . kAkB − 1:

∆r(A ⊗ B) ≤ ∆∗

r(A ⊗ B), r = r′, (5)

dr(A ⊗ B) ≥ d∗r(A ⊗ B), r = kAkB − r′ − 1. (6)

Equality in (5) is equivalent with equality in (6).
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Proof: This is obvious from the de�nitions in Equations (2) and (3). �

Proof of Theorem 1: First we prove that ∆r(A ⊗ B) ≤ ∆∗

r(A ⊗ B) for
r = 0, 1, . . . , kAkB − 1.

We onsider the projetive systems XA ⊆ P

kA−1
, XB ⊆ P

kB−1
, and

XC := XA ⊙ XB ⊆ PkAkB−1
orresponding to the odes A, B, and C :=

A ⊗ B. Let νA, νB , and ν = νC be the orresponding value assignments.

Let Π ⊆ PkAkB−1
be a subspae of dimension r and value ν(Π) = ∆r(C).

Choose pi ∈ P
kA−1

for 0 ≤ i ≤ kA−1 suh that pi is projetively independent

of {pj | j < i}, and maximising the dimension of the set of points in Π with

pi as the left hand fator, for 0 ≤ i < kA. Note that for su�iently large i,

pi may not our as a fator of any point in Π.
Let Ti ⊆ P

kB−1
be the largest set suh that pi ⊗ Ti ⊆ Π. Due to

the bilinearity of the Segre embedding, the Ti are subspaes. Write ti :=
dim lin Ti = dim Ti + 1, where dim lin denotes the linear dimension. By the

de�nition of the pi, we have ti ≥ ti+1. Let Si ⊆ Π be the set of points whose

�rst fator is in 〈{pj | 0 ≤ j ≤ i}〉.
Clearly ν(S0) = νA(p0)νB(T0) ≤ δ0(A)∆t0−1(B) from Corollary 2 (1).

Now look at Si := Si\Si−1 ⊆ Π. For any point a ⊗ b ∈ Si, we have

a ∈ Ai := 〈{pj | 0 ≤ j ≤ i}〉\〈{pj | 0 ≤ j ≤ i − 1}〉. (7)

Let R(a) ⊆ Π be the subspae of points with a as the left hand fator. Note

that R(pi) = pi⊗Ti. For any a ∈ Ai, we have dim R(a) ≤ dimR(pi) = ti−1,
by the de�nition of the pi. Therefore ν(R(a)) ≤ νA(a)∆ti−1(B), and

ν(Si) =
∑

a∈Ai

ν(R(a)) ≤ νA(Ai)∆ti−1(B). (8)

Obviously

ν(Π) =

kA−1
∑

i=0

ν(Si) ≤

kA−1
∑

i=0

νA(Ai)∆ti−1(B). (9)

Now onsider the sum τ :=
∑kA−1

i=0
ti =

∑kA−1

i=0
dim linR(pi). All the

R(pi) are disjoint, so their join Π′
has linear dimension τ . Sine Π′ ⊆ Π, we

have τ ≤ dim linΠ = r + 1.
Note that the ∆ti−1(B) is monotonially non-inreasing in i, and that

νA

( i
⋃

j=0

Aj

)

≤ ∆i(A).

Hene the highest possible value is obtained if νA(Ai) = δi(A), in whih

ase the right hand side of (9) is one of the expressions eligible for the
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maximisation in the expression (4) for ∆∗

τ−1. The t′′i in (4) are given by

the ti in this proof. In other words

ν(Π) ≤ ∆∗

τ−1(A ⊗ B) ≤ ∆∗

r(A ⊗ B).

It remains to show that ifA and B are hained odes, equality is obtained.

In fat we know this from [9℄, beause d∗r was proved to give an upper bound

on dr, but we give a diret proof for ompleteness.

Consider a set {ti = t′′i } attaining maximum in the de�nition of ∆∗

r(A⊗
B). Sine A is hained, we an take a set {pi} suh that νA(〈{pj | j ≤ i}〉) =
∆i(A). Beause B is hained, we an �nd sets Ti suh that νB(Ti) = ∆ti−1,

for 0 ≤ i ≤ kA−1, and T0 ⊇ T1 ⊇ . . . ⊇ TkA−1. Also let R(a) = a⊗Ti for all

a ∈ Ai, as de�ned in Equation (7). We see that the join Π′
of all the R(pi)

has dimension dim Π′ = r :=
∑kA−1

i=0
ti − 1, where ti := dim lin Ti. Sine the

Ti form a hain of inlusions, all R(a) ⊆ Π′
by the bilinearity of the Segre

embedding.

Now we must �nd the value of Π′
. By de�nition νB(Ti) = ∆ti−1(B), and

νA(Ai) = δi(A). Hene we have equality in (8) and ν(Π′) = ∆∗

r(A⊗B) from
(9). �

3 Further results

Theorem 2

For any two odes A and B, dr(A ⊗ B) = d∗r(A ⊗ B) for r ∈ {0, 1, 2, k −
2, k − 1, k}.

For r = 0 this is trivial, and for r = 1 and r = k it is well known. Wei

and Yang [9℄ proved it for r = 2. We prove it for r = k − 1 and r = k − 2
below, but �rst we need some basi properties of the Segre variety.

A Segre variety Y is the intersetion of hypersurfaes of degree two.

Hene any line meeting Y in at least three points is entirely ontained in Y .

Lemma 3

Let Y be a Segre variety, and let ℓ ⊆ PkAkB−1
be a line. Then the line ℓ

fators into a point ℘ in one omponent, and a line ℓ′ in the other omponent;

that is ℓ = ℘ ⊗ ℓ′ or ℓ = ℓ′ ⊗ ℘.

The onverse, that a produt ℓ′ ⊗℘ or ℘⊗ ℓ′ is a line ℓ ∈ Y , is obviously

true by bilinearity.

We believe that Lemma 3 is obvious from known results in algebrai

geometry (e.g. [4, Example 8.4.2℄). We inlude the following simple proof for

the bene�t of those who are not familiar with algebrai geometry.

Proof: Consider a line ℓ meeting Y in at least three distint points, a⊗ b,

c ⊗ d, and e ⊗ f . If the omponent points are not distint, say a = c, then

we get a line, say a ⊗ 〈b, d〉 ⊆ Y , by bilinearity. Hene we assume that the

six omponent points are distint.
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Consider the nine points

a ⊗ b, a ⊗ d, a ⊗ f, c ⊗ b, c ⊗ d, c ⊗ f, e ⊗ b, e ⊗ d, e ⊗ f.

They are all linearly independent, unless either a, c, and e, or b, d, and f are

linearly dependent. By symmetry, we an assume without loss of generality

that a, c, and e are ollinear. It follows that any three points with the same

right hand omponent must be linearly dependent, by bilinearity.

This gives three disjoint lines; all of whih meets ℓ. The linear span of

suh a on�guration an have dimension at most 4. If b, d, and f are linearly

independent, the dimension is 5 by Lemma 1, sine a and c are distint. The

ontradition shows that b, d, and f are ollinear, and hene that any three

points with the same �rst omponent are ollinear.

Sine all points with a ommon omponent are ollinear, we an visualise

them as a 3×3 grid of points. There is also a diagonal line in this grid, ℓ. It is
easily veri�ed that this on�guration is ontained in a plane, and hene any

pair of lines interset. The line with a as �rst omponent annot interset

the line with c as �rst omponent unless a = c, so this is a ontradition. �

Proof of Theorem 2: We prove that for two linear odes A and B

∆0(A ⊗ B) = ∆∗

0(A ⊗ B) = δ0(A)δ0(B), (10)

∆1(A ⊗ B) = ∆∗

1(A ⊗ B). (11)

We onsider the projetive systems XA ⊆ P

kA−1
, XB ⊆ P

kB−1
, and

XC ⊆ PkAkB−1
orresponding to A, B, and C := A⊗B, and the desribing

value assignments νA, νB , and νC . Equation (10) is obvious from Corollary 2.

Now onsider a line ℓ ⊆ PkAkB−1
suh that νC(ℓ) = ∆1(C).

If ℓ meets the Segre variety in at most two points, we have

νC(ℓ) = ∆1(C) ≤ max{δ0(A)(δ0(B) + δ′0(B)), (δ0(A) + δ′0(A))δ0(B)},

where δ′0 is the seond highest value of any point. Clearly δ′0 ≤ δ1, so this

gives

∆1(C) ≤ ∆∗

r(A ⊗ B).

Otherwise ℓ is entirely ontained in the Segre variety, and we an write

ℓ = a ⊗ ℓ1 or ℓ = ℓ2 ⊗ b. Clearly the highest possible value in eah ase is

obtained if νA(a) = δ0(A), νB(b) = δ0(B), νA(ℓ2) = ∆1(A), and νB(ℓ1) =
∆1(B). Then νC(a ⊗ ℓ1) = δ0(A)∆1(B) and νC(ℓ2 ⊗ b) = ∆1(A)δ0(B), and
the maximum of these is ∆∗

1(A ⊗ B). Equation (11) follows. �

Corollary 3

For any produt ode A⊗B of dimension at most 5, dr(A⊗B) = d∗r(A⊗B),
0 ≤ r ≤ kAkB .

This is an easy orollary of Theorem 2. The following examples show that

for a six-dimensional produt ode this may or may not hold for r = 3 = k−3.
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Example 3.1 Consider the binary [4, 3] ode A given by a value assignment

νA. Let a ∈ P2
be a point and ℓA 6∋ a a line, suh that the desribing value

assignment is given by νA(p) = 1 for p ∈ ℓA or p = a, and νA(p) = 0
otherwise. This is a hained ode with di�erene sequene is (1, 2, 1).

Then take the binary [17, 3] ode B given by a value assignment νB. Let

b ∈ P2
be a point and ℓB 6∋ b a line, suh that the desribing value assignment

is given by νB(b) = 5, νB(p) = 4 for p ∈ ℓB, and νB(p) = 0 otherwise. This

is a non-hain ode with di�erene sequene (5, 7, 5).
Now onsider C := A⊗B. To �nd ∆∗

2(C) we onsider the possible hoies
for {t′′i } in Equation (4):

{3, 0, 0} : δ0(A)∆2(B) = 17

{2, 1, 0} : δ0(A)∆1(B) + δ1(A)∆0(B) = 22

{1, 1, 1} : ∆2(A)∆0(B) = 20.

The maximum is ∆∗

2(C) = 22, and we onlude that d∗3 = 4 · 17 − 22 = 46.
The onstrution to obtain a plane P of value 22, assumes that all fa-

torisable points in P are ontained in the union of two lines. The best we

an do with this approah is to take P := 〈a′ ⊗ ℓB ∪ ℓA ⊗ b′〉 where a′ ∈ ℓA

and b′ ∈ ℓB. This gives ∆2(C) = ν(P ) = 20 < 22. Hene d3(C) = 48 > 46.
To get a value of ∆∗

2(C) = 22, we should have had νB(b′) = 6, i.e. that ℓB

ontains a point of maximum value.

Example 3.2 Take the previous example and redue the length of B by set-

ting νB(b) = 3, and νB(p) = 2 for p ∈ ℓB. Now B is a [9, 3] non-hain

ode with di�erene sequene (3, 3, 3). This gives the following hoies for

the maximisation of ∆∗

2(C):

{3, 0, 0} : δ0(A)∆2(B) = 9

{2, 1, 0} : δ0(A)∆1(B) + δ1(A)∆0(B) = 12

{1, 1, 1} : ∆2(A)∆0(B) = 12.

The maximum is ∆∗

2(C) = 12, and this is realised by the plane a⊗P2
. Hene

we get d3(C) = d∗3(C) = 4 · 9 − 12 = 24.

Remark 3.1

Even if A and B are hained odes, A ⊗ B may be non-hain.

We give an example to show this remark.

Example 3.3 De�ne two value assignments νA and νB on P

2
, de�ning two

binary, hained odes A and B. Let a, b, c ∈ P2
be projetively independent
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points, and de�ne the value assignments as follows:

νA(a) = νA(b) = 3

νA(c) = 1

νA(p) = 0, ∀p 6∈ {a, b, c}

νB(a) = 3

νB(p) = 1, ∀p 6= a.

The produt C = A⊗B orresponds to a value assignment ν on P

8
. All

points of positive value in P

8
are loated in three disjoint planes, Πa, Πb,

and Πc, onsisting of the points with a, b, or c respetively as the �rst fator.

We have

ν(a ⊗ a) = ν(b ⊗ a) = 9

ν(a ⊗ p) = ν(b ⊗ p) = 3, ∀p 6= a

ν(c ⊗ a) = 3

ν(c ⊗ p) = 1, ∀p 6= a.

We see that the only line of maximum value is ℓ := 〈a⊗a, b⊗a〉, and the

planes of maximum value are Πa and Πb, neither of whih ontains ℓ. Hene

C is non-hain.
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